Dong Alan, Sohn Lydia, Lustig Michael
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720, USA.
Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California 94720, USA.
Phys Rev E. 2023 Jul;108(1-1):014408. doi: 10.1103/PhysRevE.108.014408.
A resistive pulse sensor measures the electrical impedance of an electrolyte-filled channel as particles flow through it. Ordinarily, the presence of a nonconductive particle increases the impedance of the channel. Here we report a surprising experimental result in which a microfluidic resistive pulse sensor experiences the opposite effect: The presence of a nonconductive particle decreases the channel impedance. We explain the counterintuitive phenomenon by relating to the Braess paradox from traffic network theory, and we call it the complex-valued Braess paradox (CVBP). We develop theoretical models to study the CVBP and corroborate the experimental data using finite element simulations and lumped-element circuit modeling. We then discuss implications and potential applications of the CVBP in resistive pulse sensing and beyond.
当颗粒流经充满电解质的通道时,电阻脉冲传感器会测量该通道的电阻抗。通常情况下,非导电颗粒的存在会增加通道的电阻抗。在此,我们报告了一个惊人的实验结果:微流控电阻脉冲传感器出现了相反的效应,即非导电颗粒的存在会降低通道电阻抗。我们通过与交通网络理论中的布雷斯悖论相关联来解释这一反直觉现象,并将其称为复值布雷斯悖论(CVBP)。我们开发了理论模型来研究CVBP,并使用有限元模拟和集总元件电路建模来证实实验数据。然后,我们讨论了CVBP在电阻脉冲传感及其他领域的影响和潜在应用。