School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Lab Chip. 2017 Jul 25;17(15):2650-2666. doi: 10.1039/c7lc00545h.
A typical microfluidic device sorts, captures or fractionates sample constituents by exposing them to discriminating microenvironments. Direct electronic acquisition of such manipulation by a network of integrated sensors can provide a fast, integrated readout, replacing otherwise required microscopy. We have recently introduced a sensor technology, Microfluidic CODES, which allows us to multiplex resistive pulse sensors on a microfluidic device. Microfluidic CODES employs a network of micromachined coplanar electrodes such that particles passing over these electrodes produce distinguishable code sequences. In this paper, we explain the design process to specifically generate an orthogonal digital code set for an efficient and accurate demultiplexing of the sensor signals. We also introduce an equivalent circuit model for a network of code-multiplexed resistive pulse sensors by utilizing the Foster-Schwan model and conformal mapping, to model dynamic cell-electrode interaction in a non-uniform electric field. Our results closely match with both experimental measurements using cell lines and finite element analysis. The coding and modeling framework presented here will enable the design of code-division multiplexed resistive pulse sensors optimized to produce desired waveform patterns to ensure reliable and efficient decoding.
典型的微流控设备通过将样品暴露于有区别的微环境中对其进行分类、捕获或分离。通过集成传感器网络对这种操作进行直接电子采集,可以提供快速、集成的读数,从而取代原本所需的显微镜检查。我们最近引入了一种传感器技术,即微流控 CODES,该技术允许我们在微流控设备上复用电阻脉冲传感器。微流控 CODES 采用了一组微加工共面电极网络,使得经过这些电极的颗粒产生可区分的代码序列。在本文中,我们解释了特定的设计过程,以专门为传感器信号的高效和准确解复用生成正交数字代码集。我们还通过利用福斯特-施万模型和共形映射,为编码复用的电阻脉冲传感器网络引入了等效电路模型,以模拟非均匀电场中的动态细胞-电极相互作用。我们的结果与使用细胞系的实验测量和有限元分析非常吻合。这里提出的编码和建模框架将能够设计出优化的码分复用电阻脉冲传感器,以产生所需的波形模式,从而确保可靠和高效的解码。