Li Hongchen, Gong Yutong, Yang Hongliang, Yang Xiao, Li Ke, Wang Junjie, Hosono Hideo
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.
MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.
ChemSusChem. 2023 Nov 22;16(22):e202301016. doi: 10.1002/cssc.202301016. Epub 2023 Sep 25.
Intermetallic electrides have recently drawn considerable attention due to their unique electronic structure and high catalytic performance for the activation of inert chemical bonds under mild conditions. However, the relationship between electride (anionic) electron abundance and catalytic performance is undefined; the key deciding factor for the performance of intermetallic electride catalysts remains to be addressed. Here, the secret behind electride catalysts La-TM-Si (TM=Co, Fe and Mn) with the same crystal structure but different anionic electrons was studied. Unexpectedly, LaCoSi with the least anionic electrons showed the best catalytic activity. The experiments and first-principles calculations showed that the electride anions promote the N dissociation which alters the rate-determining step (RDS) for ammonia synthesis on the studied electrides. Different reaction mechanisms were found for La-TM-Si (TM=Fe, Co) and LaMnSi. A dual-site module was revealed for LaCoSi and LaFeSi, in which transition metals were available for the N dissociation and La accelerates the NH formation, respectively, breaking the Sabatier scaling relation. For LaMnSi, which is the most efficient for the N activation, the activity for ammonia synthesis is limited and confined by the scaling relations. The findings provide new insight into the working mechanism of intermetallic electrides.
由于其独特的电子结构以及在温和条件下对惰性化学键活化的高催化性能,金属间电子化物最近引起了广泛关注。然而,电子化物(阴离子)电子丰度与催化性能之间的关系尚不明确;金属间电子化物催化剂性能的关键决定因素仍有待探讨。在此,研究了具有相同晶体结构但阴离子电子不同的电子化物催化剂La-TM-Si(TM = Co、Fe和Mn)背后的秘密。出乎意料的是,阴离子电子最少的LaCoSi表现出最佳的催化活性。实验和第一性原理计算表明,电子化物阴离子促进了N的解离,这改变了所研究电子化物上氨合成的速率决定步骤(RDS)。发现La-TM-Si(TM = Fe、Co)和LaMnSi具有不同的反应机制。揭示了LaCoSi和LaFeSi的双位点模式,其中过渡金属分别可用于N的解离,而La加速了NH的形成,打破了萨巴蒂尔标度关系。对于对N活化最有效的LaMnSi,氨合成的活性受到标度关系的限制。这些发现为金属间电子化物的工作机制提供了新的见解。