Suppr超能文献

Calcium-induced membrane metabolic alterations modify the sex steroids binding into dog brain synaptosomal plasma membranes.

作者信息

Kopeikina-Tsiboukidou L, Deliconstantinos G

出版信息

Int J Biochem. 1986;18(9):777-84. doi: 10.1016/0020-711x(86)90053-4.

Abstract

The binding of 45Ca2+ into synaptosomal plasma membranes (SPM) of dog brain follows a sigmoid path. In graphical analysis of this binding the mean Hill coefficient (h) was 1.64 +/- 0.09 (r2 = 0.96 +/- 0.02). Binding of Ca2+ into SPM was saturable, with an apparent binding constant of 1.2 +/- 0.1 microM. At saturation, such calcium specific binding sites corresponded to 11.2 +/- 0.9 nmol/mg SPM protein. The Hill plot in combination with the biphasic nature of the curve to obtain the equilibrium constant, showed a moderate degree of positive cooperativity in the binding of calcium into SPM of at least one class of high affinity specific binding sites. [14C]estradiol, [14C]estrone and [14C]progesterone, when incubated with SPM up to a concentration of 10 microM for 2 hr at 37 degrees C, bind into SPM at nmolar concentrations. Ca2+ ions up to 5 mM considerably increase steroids binding into SPM. This effect of calcium was concentration-dependent, reached saturation at approx 4-5 mM. Once calcium has promoted steroids binding, the subsequent addition of 25 mM EGTA failed to displace bound steroids. Molecular interactions between calcium and SPM was assessed by measuring the steady-state fluorescence polarization (P) of 1,6-diphenyl-1,3,5-hexatriene (DPH), and by estimating the production of malondialdehyde (MDA) during 2 hr incubation of Ca2+ (5 mM) with SPM at 37 degrees C. The effect of Ca2+ on the SPM structure was to increase both the rigidity of the membrane and the MDA production. Chelation of Ca2+ (5 mM) with EGTA (25 mM) did not reverse the increase in the rigidity owing to metabolic alterations of SPM lipids (e.g. production of MDA).(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验