Suppr超能文献

[医院关键基础设施的恢复力:分类与量化作为优化的基础]

[Resilience of the critical infrastructure in hospitals : Categorization and quantification as a basis for optimization].

作者信息

Hübner Rico U, Küsel Cornelia, Oestmann Jörg W

机构信息

Klinik für Radiologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.

Abteilung E, Sanitätsakademie der Bundeswehr, Neuherbergstr. 11, 80937, München, Deutschland.

出版信息

Anaesthesiologie. 2023 Oct;72(10):710-718. doi: 10.1007/s00101-023-01318-9. Epub 2023 Aug 16.

Abstract

BACKGROUND

Critical infrastructure (CRITIS) in hospitals has become the focus of resilience research due to the impact of the COVID-19 pandemic and also the events in Ukraine. This foundational research examines overall contexts, categorizing and quantifying them. Previous research examined limited scale damage situations with little CRITIS involvement: Worst case studies are missing. The vulnerabilities of the CRITIS of one or more countries will likewise be a prime target for attack in current and future conflicts or criminal extortion, this is especially true in the healthcare sector. Therefore, detailed research with a black swan scenario is necessary in this field.

OBJECTIVE

The aim of the study was to create and validate a categorized and weighted model for the self-assessment of the resilience of critical infrastructure in German hospitals at different levels of care before the exemplary scenario of a prolonged supraregional power blackout.

MATERIAL AND METHODS

Using an explorative design, experts from 8 hospitals of different care levels performed an expert-based qualitative system analysis to develop, weight and test the model. The resilience index was then calculated using adapted interdependence analyses in a Vester influence matrix.

RESULTS

A total of 7 categories and 24 subcategories of hospital CRITIS were identified. There are several key elements: rank 1 of active elements is the emergency power system (E1), and for passive elements, it is the nursing staff (P2). This means that the emergency power system has the greatest impact on all other areas and the nursing staff are most dependent on all others for their work. The most critical elements, because they are most intertwined in the overall system, are the situation center/command staff (Z1) and technical staff (P3), on which the entire system depends. From the weighted individual elements of CRITIS, an overall resilience for a hospital can be calculated (resilience index). The developed model can be used by hospital crisis experts as part of a self-assessment to provide a basis for risk management, financial planning, technical planning, personnel planning or crisis and disaster management.

CONCLUSION

The categorization and quantification of critical infrastructure (CRITIS) in hospitals with the aim of resilience documentation and optimization is possible. The model that has been developed allows rapid adaptation to changing initial situations and increases in resilience that can be realized in the short and medium term. Emergency and crisis preparedness is a dynamic process, which has been combined here with the further development of critical infrastructure. Consequently, there can be no final state to be achieved but only a certain best possible framework within which the hospital as a business enterprise can operate. The classification of the categories in the model must also be constantly further developed and adapted to the current status. Once the explorative and qualitative basic research has been completed, it is necessary in a further step to subject the model, which has been validated by experts, to a broader review. Ideally, this will be done using quantitative methods and a significantly larger sample.

摘要

背景

由于新冠疫情的影响以及乌克兰事件,医院的关键基础设施(CRITIS)已成为恢复力研究的焦点。这项基础研究考察了整体背景,并对其进行分类和量化。以往的研究考察的是有限规模的损害情况,很少涉及关键基础设施:缺少最坏情况的研究。一个或多个国家的关键基础设施的脆弱性同样将成为当前和未来冲突或犯罪敲诈勒索的主要攻击目标,在医疗保健领域尤其如此。因此,在这一领域有必要进行针对黑天鹅事件的详细研究。

目的

本研究的目的是创建并验证一个分类加权模型,用于在长时间超区域停电这一示例情景之前,对德国不同护理级别的医院关键基础设施的恢复力进行自我评估。

材料与方法

采用探索性设计,来自8家不同护理级别的医院的专家进行了基于专家的定性系统分析,以开发、加权和测试该模型。然后在韦斯特影响矩阵中使用适应性相互依存分析计算恢复力指数。

结果

共识别出医院关键基础设施的7个类别和24个子类别。有几个关键要素:主动要素中排名第1的是应急供电系统(E1),被动要素中是护理人员(P2)。这意味着应急供电系统对所有其他领域的影响最大,而护理人员在工作中最依赖所有其他人员。最关键的要素是情况中心/指挥人员(Z1)和技术人员(P3),因为它们在整个系统中相互交织程度最高,整个系统都依赖于它们。根据关键基础设施的加权单个要素,可以计算出医院的整体恢复力(恢复力指数)。医院危机专家可以使用所开发的模型作为自我评估的一部分,为风险管理、财务规划、技术规划、人员规划或危机与灾害管理提供依据。

结论

对医院关键基础设施(CRITIS)进行分类和量化,以记录和优化恢复力是可行的。所开发的模型能够快速适应不断变化的初始情况,并在短期和中期实现恢复力的提升。应急和危机准备是一个动态过程,在此与关键基础设施的进一步发展相结合。因此,不存在要实现的最终状态,而只有一个医院作为商业企业能够运营的最佳可能框架。模型中类别的分类也必须不断进一步发展并适应当前状况。一旦探索性和定性的基础研究完成,在进一步的步骤中,有必要让经过专家验证的模型接受更广泛的审查。理想情况下,这将使用定量方法和显著更大的样本进行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1c8/10550864/30c8d4c3c5f8/101_2023_1318_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验