Suppr超能文献

Versatile multicontact planning and control for legged loco-manipulation.

作者信息

Sleiman Jean-Pierre, Farshidian Farbod, Hutter Marco

机构信息

Robotic Systems Lab, ETH Zurich, Zurich, Switzerland.

出版信息

Sci Robot. 2023 Aug 16;8(81):eadg5014. doi: 10.1126/scirobotics.adg5014.

Abstract

Loco-manipulation planning skills are pivotal for expanding the utility of robots in everyday environments. These skills can be assessed on the basis of a system's ability to coordinate complex holistic movements and multiple contact interactions when solving different tasks. However, existing approaches have been merely able to shape such behaviors with hand-crafted state machines, densely engineered rewards, or prerecorded expert demonstrations. Here, we propose a minimally guided framework that automatically discovers whole-body trajectories jointly with contact schedules for solving general loco-manipulation tasks in premodeled environments. The key insight is that multimodal problems of this nature can be formulated and treated within the context of integrated task and motion planning (TAMP). An effective bilevel search strategy was achieved by incorporating domain-specific rules and adequately combining the strengths of different planning techniques: trajectory optimization and informed graph search coupled with sampling-based planning. We showcase emergent behaviors for a quadrupedal mobile manipulator exploiting both prehensile and nonprehensile interactions to perform real-world tasks such as opening/closing heavy dishwashers and traversing spring-loaded doors. These behaviors were also deployed on the real system using a two-layer whole-body tracking controller.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验