NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy.
Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy.
Sci Rep. 2023 Aug 16;13(1):13342. doi: 10.1038/s41598-023-40272-9.
Pro-inflammatory cytokines contribute to β-cell failure in both Type-1 and Type-2 Diabetes. Data collected so far allowed to dissect the genomic, transcriptomic, proteomic and biochemical landscape underlying cytokine-induced β-cell progression through dysfunction. Yet, no report thus far complemented such molecular information with the direct optical nanoscopy of the β-cell subcellular environment. Here we tackle this issue in Insulinoma 1E (INS-1E) β-cells by label-free fluorescence lifetime imaging microscopy (FLIM) and fluorescence-based super resolution imaging by expansion microscopy (ExM). It is found that 24-h exposure to IL-1β and IFN-γ is associated with a neat modification of the FLIM signature of cell autofluorescence due to the increase of either enzyme-bound NAD(P)H molecules and of oxidized lipid species. At the same time, ExM-based direct imaging unveils neat alteration of mitochondrial morphology (i.e. ~ 80% increase of mitochondrial circularity), marked degranulation (i.e. ~ 40% loss of insulin granules, with mis-localization of the surviving pool), appearance of F-actin-positive membrane blebs and an hitherto unknown extensive fragmentation of the microtubules network (e.g. ~ 37% reduction in the number of branches). Reported observations provide an optical-microscopy framework to interpret the amount of molecular information collected so far on β-cell dysfunction and pave the way to future ex-vivo and in-vivo investigations.
促炎细胞因子在 1 型和 2 型糖尿病中均导致β细胞衰竭。迄今为止收集的数据使我们能够剖析细胞因子诱导的β细胞功能障碍进展背后的基因组、转录组、蛋白质组和生化景观。然而,迄今为止,没有任何报告将这种分子信息与β细胞亚细胞环境的直接光学纳米镜检查结果相结合。在这里,我们通过无标记荧光寿命成像显微镜(FLIM)和基于荧光的扩展显微镜(ExM)对胰岛素瘤 1E(INS-1E)β细胞解决了这个问题。研究发现,IL-1β 和 IFN-γ 暴露 24 小时与细胞自发荧光的 FLIM 特征的明显修饰有关,这是由于酶结合的 NAD(P)H 分子和氧化脂质种类的增加所致。同时,基于 ExM 的直接成像揭示了线粒体形态的明显改变(即线粒体圆形度增加约 80%)、明显脱颗粒(即胰岛素颗粒损失约 40%,剩余颗粒定位错误)、F-肌动蛋白阳性膜泡的出现以及微管网络的未知广泛碎片化(例如,分支数量减少约 37%)。所报道的观察结果提供了一个光学显微镜框架来解释迄今为止收集到的关于β细胞功能障碍的分子信息量,并为未来的离体和体内研究铺平了道路。