Suppr超能文献

研究高分辨率行为动态时采样的合适比例的相关性。

The relevance of a right scale for sampling when studying high-resolution behavioral dynamics.

机构信息

Facultad de Matemática, Astronomía Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina.

Instituto de Física Enrique Gaviola (IFEG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Córdoba, Argentina.

出版信息

Sci Rep. 2023 Aug 16;13(1):13291. doi: 10.1038/s41598-023-39295-z.

Abstract

Many species used in behavioral studies are small vertebrates with high metabolic rates and potentially enhanced temporal resolution of perception. Nevertheless, the selection of an appropriate scales to evaluate behavioral dynamics has received little attention. Herein, we studied the temporal organization of behaviors at fine-grain (i.e. sampling interval ≤1s) to gain insight into dynamics and to rethink how behavioral events are defined. We statistically explored high-resolution Japanese quail (Coturnix japonica) datasets encompassing 17 defined behaviors. We show that for the majority of these behaviors, events last predominately <300ms and can be shorter than 70ms. Insufficient sampling resolution, even in the order of 1s, of behaviors that involve spatial displacement (e.g. walking) yields distorted probability distributions of event durations and overestimation of event durations. Contrarily, behaviors without spatial displacement (e.g. vigilance) maintain non-Gaussian, power-law-type distributions indicative of long-term memory, independently of the sampling resolution evaluated. Since data probability distributions reflect underlying biological processes, our results highlight the importance of quantification of behavioral dynamics based on the temporal scale pertinent to the species, and data distribution. We propose a hierarchical model that links diverse types of behavioral definitions and distributions, and paves the way towards a statistical framework for defining behaviors.

摘要

许多用于行为研究的物种是小型脊椎动物,具有较高的代谢率和潜在增强的感知时间分辨率。然而,选择适当的尺度来评估行为动态受到的关注很少。在这里,我们研究了精细粒度(即采样间隔≤1s)下行为的时间组织,以深入了解动态,并重新思考如何定义行为事件。我们从统计学上探索了涵盖 17 种定义行为的高分辨率日本鹌鹑(Coturnix japonica)数据集。我们表明,对于这些行为中的大多数,事件主要持续时间<300ms,并且可以短于 70ms。即使采样分辨率在 1s 左右,涉及空间位移(例如行走)的行为也会导致事件持续时间的概率分布扭曲和事件持续时间的高估。相反,没有空间位移的行为(例如警戒)保持非高斯幂律类型分布,表明存在长期记忆,而与评估的采样分辨率无关。由于数据概率分布反映了潜在的生物过程,我们的结果强调了根据物种和数据分布的时间尺度对行为动态进行定量的重要性。我们提出了一个层次模型,将各种类型的行为定义和分布联系起来,为定义行为铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a69/10432462/6cc201ec84fd/41598_2023_39295_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验