Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China.
Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States.
Am J Physiol Renal Physiol. 2023 Oct 1;325(4):F503-F518. doi: 10.1152/ajprenal.00018.2023. Epub 2023 Aug 17.
Autophagy, a cellular process of "self-eating," plays an essential role in renal pathophysiology. However, the effect of autophagy on urine-concentrating ability in physiological conditions is still unknown. This study aimed to determine the relevance and mechanisms of autophagy for maintaining urine-concentrating capability during antidiuresis. The extent of the autophagic response to water deprivation (WD) was different between the renal cortex and medulla in mice. Autophagy activity levels in the renal cortex were initially suppressed and then stimulated by WD in a time-dependent manner. During 48 h WD, the urine-concentrating capability of mice was impaired by rapamycin (Rapa) but not by 3-methyladenine (3-MA), accompanied by suppressed renal aquaporin 2 (AQP2), V receptor (VR), renin, and angiotensin-converting enzyme (ACE) expression, and levels of prorenin/renin, angiotensin II (ANG II), and aldosterone in the plasma and urine. In contrast, 3-MA and chloroquine (CQ) suppressed the urine-concentrating capability in WD mice, accompanied by downregulation of AQP2 and VR expression in the renal cortex. 3-MA and CQ further increased AQP2 and VR expression in the renal medulla of WD mice. Compared with 3-MA and CQ, Rapa administration yielded completely opposite results on the above parameters in WD mice. In addition, 3-MA and CQ abolished the upregulation of prorenin/renin, ANG II, and aldosterone levels in the plasma and urine in WD mice. Taken together, our study demonstrated that autophagy regulated urine-concentrating capability through differential regulation of renal AQP2/VR and ACE/ANG II signaling during WD. Autophagy exhibits a double-edged effect on cell survival and plays an essential role in renal pathophysiology. We for the first time reported a novel function of autophagy that controls the urine-concentrating capability in physiological conditions. We found that water deprivation (WD) differentially regulated autophagy in the kidneys of mice in a time-dependent manner and autophagy regulates the urine-concentrating capability mainly by regulating AQP2/VR and ACE/ANG II signaling in the renal cortex in WD mice.
自噬是一种“自我吞噬”的细胞过程,在肾脏病理生理学中起着至关重要的作用。然而,自噬对生理条件下尿液浓缩能力的影响尚不清楚。本研究旨在确定自噬在抗利尿时维持尿液浓缩能力的相关性和机制。在小鼠的肾脏皮质和髓质中,自噬对水剥夺(WD)的反应程度不同。WD 以时间依赖性的方式最初抑制然后刺激肾脏皮质中的自噬活性水平。在 48 h WD 期间,雷帕霉素(Rapa)但不是 3-甲基腺嘌呤(3-MA)损害了小鼠的尿液浓缩能力,同时伴有肾水通道蛋白 2(AQP2)、V 受体(VR)、肾素和血管紧张素转换酶(ACE)表达的抑制,以及血浆和尿液中前肾素/肾素、血管紧张素 II(ANG II)和醛固酮的水平。相比之下,3-MA 和氯喹(CQ)抑制 WD 小鼠的尿液浓缩能力,同时伴有肾皮质中 AQP2 和 VR 表达的下调。3-MA 和 CQ 进一步增加 WD 小鼠肾髓质中 AQP2 和 VR 的表达。与 3-MA 和 CQ 相比,Rapa 在 WD 小鼠中对上述参数产生了完全相反的结果。此外,3-MA 和 CQ 消除了 WD 小鼠血浆和尿液中前肾素/肾素、ANG II 和醛固酮水平的上调。综上所述,本研究表明,自噬通过 WD 期间对肾 AQP2/VR 和 ACE/ANG II 信号的差异调节来调节尿液浓缩能力。自噬对细胞存活表现出双刃剑的作用,在肾脏病理生理学中起着至关重要的作用。我们首次报道了自噬的一个新功能,即在生理条件下控制尿液浓缩能力。我们发现 WD 以时间依赖性的方式在小鼠肾脏中差异调节自噬,自噬主要通过调节 WD 小鼠肾皮质中的 AQP2/VR 和 ACE/ANG II 信号来调节尿液浓缩能力。