Suppr超能文献

基于双能 CT 的动脉增强分数在甲状腺乳头状癌颈淋巴结转移术前诊断中的应用价值:初步结果。

Added value of arterial enhancement fraction derived from dual-energy computed tomography for preoperative diagnosis of cervical lymph node metastasis in papillary thyroid cancer: initial results.

机构信息

Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China.

Section of Clinical Research, Philips Healthcare Ltd, Shanghai, China.

出版信息

Eur Radiol. 2024 Feb;34(2):1292-1301. doi: 10.1007/s00330-023-10109-0. Epub 2023 Aug 17.

Abstract

OBJECTIVES

To explore the added value of arterial enhancement fraction (AEF) derived from dual-energy computed tomography CT (DECT) to conventional image features for diagnosing cervical lymph node (LN) metastasis in papillary thyroid cancer (PTC).

METHODS

A total of 273 cervical LNs (153 non-metastatic and 120 metastatic) were recruited from 92 patients with PTC. Qualitative image features of LNs were assessed. Both single-energy CT (SECT)-derived AEF (AEF) and DECT-derived AEF (AEF) were calculated. Correlation between AEF and AEF was determined using Pearson's correlation coefficient. Multivariate logistic regression analysis with the forward variable selection method was used to build three models (conventional features, conventional features + AEF, and conventional features + AEF). Diagnostic performances were evaluated using receiver operating characteristic (ROC) curve analyses.

RESULTS

Abnormal enhancement, calcification, and cystic change were chosen to build model 1 and the model provided moderate diagnostic performance with an area under the ROC curve (AUC) of 0.675. Metastatic LNs demonstrated both significantly higher AEF (1.14 vs 0.48; p < 0.001) and AEF (1.08 vs 0.38; p < 0.001) than non-metastatic LNs. AEF correlated well with AEF (r = 0.802; p < 0.001), and exhibited comparable performance with AEF (AUC, 0.867 vs 0.852; p = 0.628). Combining CT image features with AEF (model 2) and AEF (model 3) could significantly improve diagnostic performances (AUC, 0.865 vs 0.675; AUC, 0.883 vs 0.675; both p < 0.001).

CONCLUSIONS

AEF correlated well with AEF, and exhibited comparable performance with AEF. Integrating qualitative CT image features with both AEF and AEF could further improve the ability in diagnosing cervical LN metastasis in PTC.

CLINICAL RELEVANCE STATEMENT

Arterial enhancement fraction (AEF) values, especially AEF derived from dual-energy computed tomography, can help to diagnose cervical lymph node metastasis in patients with papillary thyroid cancer, and complement conventional CT image features for improved clinical decision making.

KEY POINTS

• Metastatic cervical lymph nodes (LNs) demonstrated significantly higher arterial enhancement fraction (AEF) derived from dual-energy computed tomography (DECT) and single-energy CT (SECT)-derived AEF (AEF) than non-metastatic LNs in patients with papillary thyroid cancer. • DECT-derived AEF (AEF) correlated significantly with AEF, and exhibited comparable performance with AEF. • Integrating qualitative CT images features with both AEF and AEF could further improve the differential ability.

摘要

目的

探讨基于双能 CT(DECT)的动脉增强分数(AEF)对甲状腺乳头状癌(PTC)颈淋巴结(LN)转移的常规影像特征的诊断价值。

方法

从 92 例 PTC 患者中招募了 273 个颈 LN(153 个非转移性和 120 个转移性)。评估 LN 的定性图像特征。计算单能 CT(SECT)衍生的 AEF(AEF)和 DECT 衍生的 AEF(AEF)。使用 Pearson 相关系数确定 AEF 与 AEF 之间的相关性。使用向前变量选择方法的多变量逻辑回归分析建立了三个模型(常规特征、常规特征+AEF 和常规特征+AEF)。使用受试者工作特征(ROC)曲线分析评估诊断性能。

结果

异常强化、钙化和囊性改变被选为构建模型 1,该模型提供了中等的诊断性能,ROC 曲线下面积(AUC)为 0.675。转移性 LN 的 AEF(1.14 比 0.48;p<0.001)和 AEF(1.08 比 0.38;p<0.001)均显著高于非转移性 LN。AEF 与 AEF 相关性良好(r=0.802;p<0.001),与 AEF 具有相当的性能(AUC,0.867 比 0.852;p=0.628)。将 CT 图像特征与 AEF(模型 2)和 AEF(模型 3)相结合可以显著提高诊断性能(AUC,0.865 比 0.675;AUC,0.883 比 0.675;均 p<0.001)。

结论

AEF 与 AEF 相关性良好,与 AEF 具有相当的性能。将定性 CT 图像特征与 AEF 和 AEF 相结合,可进一步提高对 PTC 颈 LN 转移的诊断能力。

临床相关性声明

动脉增强分数(AEF)值,特别是来自双能 CT 的 AEF 值,可以帮助诊断甲状腺乳头状癌患者的颈淋巴结转移,并补充常规 CT 图像特征以改善临床决策。

关键点

  • 甲状腺乳头状癌患者中,转移性颈淋巴结(LN)的 DECT 衍生的 AEF(AEF)和 SECT 衍生的 AEF(AEF)明显高于非转移性 LN。

  • DECT 衍生的 AEF(AEF)与 AEF 显著相关,与 AEF 具有相当的性能。

  • 将定性 CT 图像特征与 AEF 和 AEF 相结合,可进一步提高鉴别能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验