Freie Universität Berlin, Germany.
Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Germany.
J Cogn Neurosci. 2023 Nov 1;35(11):1879-1897. doi: 10.1162/jocn_a_02043.
Humans effortlessly make quick and accurate perceptual decisions about the nature of their immediate visual environment, such as the category of the scene they face. Previous research has revealed a rich set of cortical representations potentially underlying this feat. However, it remains unknown which of these representations are suitably formatted for decision-making. Here, we approached this question empirically and computationally, using neuroimaging and computational modeling. For the empirical part, we collected EEG data and RTs from human participants during a scene categorization task (natural vs. man-made). We then related EEG data to behavior to behavior using a multivariate extension of signal detection theory. We observed a correlation between neural data and behavior specifically between ∼100 msec and ∼200 msec after stimulus onset, suggesting that the neural scene representations in this time period are suitably formatted for decision-making. For the computational part, we evaluated a recurrent convolutional neural network (RCNN) as a model of brain and behavior. Unifying our previous observations in an image-computable model, the RCNN predicted well the neural representations, the behavioral scene categorization data, as well as the relationship between them. Our results identify and computationally characterize the neural and behavioral correlates of scene categorization in humans.
人类能够轻松地对其即时视觉环境的性质做出快速而准确的感知决策,例如他们所面对的场景类别。先前的研究揭示了潜在的丰富的皮质代表区域,这些区域可能是这一壮举的基础。然而,目前尚不清楚这些表示中的哪些表示适合用于决策。在这里,我们通过神经影像学和计算建模从经验和计算两个方面来解决这个问题。在经验部分,我们在场景分类任务(自然 vs. 人造)中收集了人类参与者的 EEG 数据和 RT。然后,我们使用信号检测理论的多变量扩展将 EEG 数据与行为相关联。我们观察到神经数据与行为之间的相关性,特别是在刺激开始后约 100 毫秒至 200 毫秒之间,这表明在此时间段内,神经场景表示形式适合于决策。在计算部分,我们评估了一个递归卷积神经网络(RCNN)作为大脑和行为的模型。该 RCNN 将我们之前在可计算图像模型中的观察结果统一起来,很好地预测了神经表示、行为场景分类数据以及它们之间的关系。我们的结果确定了人类场景分类的神经和行为相关物,并对其进行了计算表征。