Zhang Zhiqiang, Chen Yuxuan, Zhang Dandan, Qian Yining, Wang Hongbing
IEEE Trans Neural Netw Learn Syst. 2024 Nov;35(11):16368-16382. doi: 10.1109/TNNLS.2023.3294064. Epub 2024 Oct 29.
Although current time-series forecasting methods have significantly improved the state-of-the-art (SOTA) results for long-sequence time-series forecasting (LSTF), they still have difficulty in capturing and extracting the features and dependencies of long-term sequences and suffer from information utilization bottlenecks and high-computational complexity. To address these issues, a lightweight single-hidden layer feedforward neural network (SLFN) combining convolution mapping and time-frequency decomposition called CTFNet is proposed with three distinctive characteristics. First, time-domain (TD) feature mining-in this article, a method for extracting the long-term correlation of horizontal TD features based on matrix factorization is proposed, which can effectively capture the interdependence among different sample points of a long time series. Second, multitask frequency-domain (FD) feature mining-this can effectively extract different frequency feature information of time-series data from the FD and minimize the loss of data features. Integrating multiscale dilated convolutions, simultaneously focusing on both global and local context feature dependencies at the sequence level, and mining the long-term dependencies of the multiscale frequency information and the spatial dependencies among the different scale frequency information, break the bottleneck of data utilization, and ensure the integrity of feature extraction. Third, highly efficient-the CTFNet model has a short training time and fast inference speed. Our empirical studies with nine benchmark datasets show that compared with state-of-the-art methods, CTFNet can reduce prediction error by 64.7% and 53.7% for multivariate and univariate time series, respectively.
尽管当前的时间序列预测方法在长序列时间序列预测(LSTF)方面显著提升了现有技术(SOTA)的结果,但它们在捕获和提取长期序列的特征及依赖关系方面仍存在困难,并且面临信息利用瓶颈和高计算复杂度问题。为了解决这些问题,本文提出了一种结合卷积映射和时频分解的轻量级单隐藏层前馈神经网络(SLFN),称为CTFNet,它具有三个显著特点。第一,时域(TD)特征挖掘——本文提出了一种基于矩阵分解提取水平TD特征长期相关性的方法,该方法可以有效捕获长时间序列不同采样点之间的相互依赖关系。第二,多任务频域(FD)特征挖掘——这可以从频域有效提取时间序列数据的不同频率特征信息,并最小化数据特征的损失。集成多尺度扩张卷积,同时关注序列层面的全局和局部上下文特征依赖关系,挖掘多尺度频率信息的长期依赖关系以及不同尺度频率信息之间的空间依赖关系,打破数据利用瓶颈,并确保特征提取的完整性。第三,高效——CTFNet模型训练时间短且推理速度快。我们对九个基准数据集的实证研究表明,与现有技术方法相比,CTFNet在多变量和单变量时间序列上分别可将预测误差降低64.7%和53.7%。