IEEE J Biomed Health Inform. 2023 Nov;27(11):5237-5248. doi: 10.1109/JBHI.2023.3306041. Epub 2023 Nov 7.
Accurate and interpretable differential diagnostic technologies are crucial for supporting clinicians in decision-making and treatment-planning for patients with fever of unknown origin (FUO). Existing solutions commonly address the diagnosis of FUO by transforming it into a multi-classification task. However, after the emergence of COVID-19 pandemic, clinicians have recognized the heightened significance of early diagnosis in patients with FUO, particularly for practical needs such as early triage. This has resulted in increased demands for identifying a wider range of etiologies, shorter observation windows, and better model interpretability. In this article, we propose an interpretable hierarchical multimodal neural network framework (iHMNNF) to facilitate early diagnosis of FUO by incorporating medical domain knowledge and leveraging multimodal clinical data. The iHMNNF comprises a top-down hierarchical reasoning framework (Td-HRF) built on the class hierarchy of FUO etiologies, five local attention-based multimodal neural networks (La-MNNs) trained for each parent node of the class hierarchy, and an interpretable module based on layer-wise relevance propagation (LRP) and attention mechanism. Experimental datasets were collected from electronic health records (EHRs) at a large-scale tertiary grade-A hospital in China, comprising 34,051 hospital admissions of 30,794 FUO patients from January 2011 to October 2020. Our proposed La-MNNs achieved area under the receiver operating characteristic curve (AUROC) values ranging from 0.7809 to 0.9035 across all five decomposed tasks, surpassing competing machine learning (ML) and single-modality deep learning (DL) methods while also providing enhanced interpretability. Furthermore, we explored the feasibility of identifying FUO etiologies using only the first N-hour time series data obtained after admission.
准确且可解释的鉴别诊断技术对于支持临床医生对不明原因发热(FUO)患者的决策和治疗计划至关重要。现有的解决方案通常通过将 FUO 诊断转化为多分类任务来解决。然而,自 COVID-19 大流行以来,临床医生已经认识到早期诊断对 FUO 患者的重要性,特别是对于早期分诊等实际需求。这导致对识别更广泛病因、更短观察窗口和更好模型可解释性的需求增加。在本文中,我们提出了一种可解释的层次化多模态神经网络框架(iHMNNF),通过纳入医学领域知识和利用多模态临床数据来促进 FUO 的早期诊断。iHMNNF 包括基于 FUO 病因分类层次结构构建的自上而下层次推理框架(Td-HRF)、为每个分类层次结构的父节点训练的五个基于局部注意力的多模态神经网络(La-MNN),以及基于层间相关性传播(LRP)和注意力机制的可解释模块。实验数据集来自中国一家大型三级甲等医院的电子健康记录(EHR),包含 2011 年 1 月至 2020 年 10 月 30794 名 FUO 患者的 34051 例住院病例。我们提出的 La-MNN 在所有五个分解任务中的受试者工作特征曲线(AUROC)值均在 0.7809 到 0.9035 之间,超过了竞争的机器学习(ML)和单模态深度学习(DL)方法,同时也提供了增强的可解释性。此外,我们还探讨了仅使用入院后获得的前 N 小时时间序列数据识别 FUO 病因的可行性。