Suppr超能文献

通过离子树枝状分子增强界面兼容性以实现高效稳定的钙钛矿太阳能电池

Enhanced Interface Compatibility by Ionic Dendritic Molecules To Achieve Efficient and Stable Perovskite Solar Cells.

作者信息

Qi Lianlian, Du Guozheng, Zhu Guojie, Wang Yang, Yang Li, Zhang Jinbao

机构信息

College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China.

Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.

出版信息

ACS Appl Mater Interfaces. 2023 Aug 30;15(34):41109-41120. doi: 10.1021/acsami.3c07539. Epub 2023 Aug 17.

Abstract

Poly(3-hexylthiophene) (P3HT) represents a promising hole transport material for emerging perovskite solar cells (PSCs) due to its appealing merits of high thermal stability and appropriate hydrophobicity. Nonetheless, large energy losses at the P3HT/perovskite interface lead to unsatisfied efficiency and stability of the devices. Herein, two ionic dendritic molecules, 3,3'-(2,7-bis(3,6-bis(bis(4-methoxyphenyl)amino)-9H-carbazol-9-yl)-9H-fluorene-9,9-diyl)bis(,,-trimethylpropan-1-aminium) iodide and 3,3'-(2,7-bis(bis(4-(bis(4-methoxyphenyl)amino)phenyl)amino)-9H-fluorene-9,9-diyl)bis(,,-trimethylpropan-1-aminium) iodide, namely, MPA-Cz-FAI and MPA-PA-FAI, are rationally designed as the interlayer to enhance interfacial compatibility. The dendritic backbone with conjugated structure endows the hole transport layer with high conductivity, derived from the more ordered microstructure with larger crystallization and higher connectivity of domain zones. Besides, a better energy level alignment is established between P3HT and perovskite, which enhances the charge extraction and transport yield. In addition, the peripheral methoxy groups enable effective defect passivation at the interface to suppress nonradiative recombination and the quaternary ammonium iodide serving as side chains enable efficient interfacial hole extraction contributing to enhanced charge collection yield. As a result, the dopant-free P3HT-based PSCs modified with MPA-Cz-PAI deliver a champion efficiency of 19.7%, significantly higher than that of the control devices (15.4%). More encouragingly, the unencapsulated devices demonstrate competitive environmental stability by retaining over 85% of its initial efficiency after 1500 h of storage under humid conditions (70% relative humidity). This work provides an effective molecular design strategy for interface engineering, envisaging a bright prospect for the further development of efficient and stable perovskite solar cells.

摘要

聚(3 - 己基噻吩)(P3HT)因其具有高热稳定性和适当疏水性等吸引人的优点,成为新兴钙钛矿太阳能电池(PSC)中一种很有前景的空穴传输材料。然而,P3HT/钙钛矿界面处的大量能量损失导致器件的效率和稳定性不尽人意。在此,两种离子树枝状分子,即3,3'-(2,7 - 双(3,6 - 双(双(4 - 甲氧基苯基)氨基)- 9H - 咔唑 - 9 - 基)- 9H - 芴 - 9,9 - 二基)双(,, - 三甲基丙烷 - 1 - 铵)碘化物和3,3'-(2,7 - 双(双(4 - (双(4 - 甲氧基苯基)氨基)苯基)氨基)- 9H - 芴 - 9,9 - 二基)双(,, - 三甲基丙烷 - 1 - 铵)碘化物,即MPA - Cz - FAI和MPA - PA - FAI,被合理设计为中间层以增强界面兼容性。具有共轭结构的树枝状主链赋予空穴传输层高导电性,这源于具有更大结晶度和更高域区连通性的更有序微观结构。此外,在P3HT和钙钛矿之间建立了更好的能级排列,从而提高了电荷提取和传输效率。此外,外围甲氧基能够在界面处实现有效的缺陷钝化,以抑制非辐射复合,而作为侧链的季铵碘化物能够实现高效的界面空穴提取,有助于提高电荷收集效率。结果,用MPA - Cz - PAI修饰的无掺杂P3HT基PSC的最佳效率达到19.7%,显著高于对照器件(15.4%)。更令人鼓舞的是,未封装的器件在潮湿条件(相对湿度70%)下储存1500小时后,仍保持其初始效率的85%以上,显示出具有竞争力的环境稳定性。这项工作为界面工程提供了一种有效的分子设计策略,为高效稳定的钙钛矿太阳能电池的进一步发展设想了光明的前景。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验