Suppr超能文献

利用卫星衍生代理变量和物种分布模型绘制小型哺乳动物的最适栖息地图。

Mapping small mammal optimal habitats using satellite-derived proxy variables and species distribution models.

机构信息

UK Centre for Ecology and Hydrology, Lancaster, United Kingdom.

Department of Chrono-Environment, University of Bourgogne Franche-Comte/CNRS, Besançon, France.

出版信息

PLoS One. 2023 Aug 17;18(8):e0289209. doi: 10.1371/journal.pone.0289209. eCollection 2023.

Abstract

Small mammal species play an important role influencing vegetation primary productivity and plant species composition, seed dispersal, soil structure, and as predator and/or prey species. Species which experience population dynamics cycles can, at high population phases, heavily impact agricultural sectors and promote rodent-borne disease transmission. To better understand the drivers behind small mammal distributions and abundances, and how these differ for individual species, it is necessary to characterise landscape variables important for the life cycles of the species in question. In this study, a suite of Earth observation derived metrics quantifying landscape characteristics and dynamics, and in-situ small mammal trapline and transect survey data, are used to generate random forest species distribution models for nine small mammal species for study sites in Narati, China and Sary Mogul, Kyrgyzstan. These species distribution models identify the important landscape proxy variables driving species abundance and distributions, in turn identifying the optimal conditions for each species. The observed relationships differed between species, with the number of landscape proxy variables identified as important for each species ranging from 3 for Microtus gregalis at Sary Mogul, to 26 for Ellobius tancrei at Narati. Results indicate that grasslands were predicted to hold higher abundances of Microtus obscurus, E. tancrei and Marmota baibacina, forest areas hold higher abundances of Myodes centralis and Sorex asper, with mixed forest-grassland boundary areas and areas close to watercourses predicted to hold higher abundances of Apodemus uralensis and Sicista tianshanica. Localised variability in vegetation and wetness conditions, as well as presence of certain habitat types, are also shown to influence these small mammal species abundances. Predictive application of the Random Forest (RF) models identified spatial hot-spots of high abundance, with model validation producing R2 values between 0.670 for M. gregalis transect data at Sary Mogul to 0.939 for E. tancrei transect data at Narati. This enhances previous work whereby optimal habitat was defined simply as presence of a given land cover type, and instead defines optimal habitat via a combination of important landscape dynamic variables, moving from a human-defined to species-defined perspective of optimal habitat. The species distribution models demonstrate differing distributions and abundances of host species across the study areas, utilising the strengths of Earth observation data to improve our understanding of landscape and ecological linkages to small mammal distributions and abundances.

摘要

小型哺乳动物在影响植被初级生产力和植物物种组成、种子传播、土壤结构以及作为捕食者和/或猎物方面发挥着重要作用。经历种群动态周期的物种在高种群阶段可能会严重影响农业部门,并促进啮齿动物传播疾病的传播。为了更好地了解小型哺乳动物分布和丰度的驱动因素,以及这些因素如何因物种而异,有必要描述对所研究物种生命周期重要的景观变量。在这项研究中,一套基于地球观测的指标,用于量化景观特征和动态,以及实地小型哺乳动物陷阱和样带调查数据,用于生成中国那拉提和吉尔吉斯斯坦萨雷莫格尔研究地点的 9 种小型哺乳动物的随机森林物种分布模型。这些物种分布模型确定了驱动物种丰度和分布的重要景观代理变量,从而确定了每种物种的最佳条件。观察到的关系因物种而异,每种物种确定的重要景观代理变量数量从萨雷莫格尔的小家鼠 3 个到那拉提的东方田鼠 26 个不等。结果表明,草原地区预测会有更高数量的暗纹东方田鼠、东方田鼠和喜马拉雅旱獭,森林地区预测会有更高数量的黑线姬鼠和川西长尾鼩,混合森林-草原边界地区和靠近水道的地区预测会有更高数量的黑线姬鼠和田鼠。局部植被和湿度条件的变化以及某些栖息地类型的存在也被证明会影响这些小型哺乳动物的丰度。随机森林(RF)模型的预测应用确定了高丰度的空间热点,模型验证产生的 R2 值在萨雷莫格尔的小家鼠样带数据为 0.670 到那拉提的东方田鼠样带数据为 0.939 之间。这增强了以前的工作,以前的工作简单地将最佳栖息地定义为存在给定的土地覆盖类型,而是通过重要的景观动态变量组合来定义最佳栖息地,从人为定义的最佳栖息地视角转变为物种定义的最佳栖息地视角。物种分布模型展示了研究区域内宿主物种的不同分布和丰度,利用地球观测数据的优势提高了我们对景观和生态联系的理解,这些联系与小型哺乳动物的分布和丰度有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535b/10434852/55b3ee79e3cf/pone.0289209.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验