Suppr超能文献

利用卫星遥感预测因子预测物种分布和群落组成。

Predicting species distributions and community composition using satellite remote sensing predictors.

机构信息

Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Ave, Saint Paul, MN, 55108, USA.

出版信息

Sci Rep. 2021 Aug 12;11(1):16448. doi: 10.1038/s41598-021-96047-7.

Abstract

Biodiversity is rapidly changing due to changes in the climate and human related activities; thus, the accurate predictions of species composition and diversity are critical to developing conservation actions and management strategies. In this paper, using satellite remote sensing products as covariates, we constructed stacked species distribution models (S-SDMs) under a Bayesian framework to build next-generation biodiversity models. Model performance of these models was assessed using oak assemblages distributed across the continental United States obtained from the National Ecological Observatory Network (NEON). This study represents an attempt to evaluate the integrated predictions of biodiversity models-including assemblage diversity and composition-obtained by stacking next-generation SDMs. We found that applying constraints to assemblage predictions, such as using the probability ranking rule, does not improve biodiversity prediction models. Furthermore, we found that independent of the stacking procedure (bS-SDM versus pS-SDM versus cS-SDM), these kinds of next-generation biodiversity models do not accurately recover the observed species composition at the plot level or ecological-community scales (NEON plots are 400 m). However, these models do return reasonable predictions at macroecological scales, i.e., moderately to highly correct assignments of species identities at the scale of NEON sites (mean area ~ 27 km). Our results provide insights for advancing the accuracy of prediction of assemblage diversity and composition at different spatial scales globally. An important task for future studies is to evaluate the reliability of combining S-SDMs with direct detection of species using image spectroscopy to build a new generation of biodiversity models that accurately predict and monitor ecological assemblages through time and space.

摘要

由于气候变化和人类相关活动的影响,生物多样性正在迅速变化;因此,准确预测物种组成和多样性对于制定保护措施和管理策略至关重要。在本文中,我们使用卫星遥感产品作为协变量,在贝叶斯框架下构建了堆叠物种分布模型(S-SDMs),以构建下一代生物多样性模型。我们使用美国国家生态观测网络(NEON)获得的分布在整个美国大陆的栎属集合体来评估这些模型的性能。本研究代表了评估包括集合体多样性和组成在内的生物多样性模型综合预测的尝试,这些模型是通过堆叠下一代 SDM 获得的。我们发现,对集合体预测应用约束,例如使用概率排序规则,并不会提高生物多样性预测模型的性能。此外,我们发现,无论堆叠过程如何(bS-SDM、pS-SDM 还是 cS-SDM),这些下一代生物多样性模型都不能准确地恢复观测到的物种组成,无论是在样地水平还是生态群落尺度(NEON 样地为 400 m)。然而,这些模型在大尺度上确实可以得出合理的预测,即在 NEON 站点的尺度上(平均面积约为 27 km),物种身份的中等至高度正确分配。我们的研究结果为提高全球不同空间尺度上集合体多样性和组成预测的准确性提供了新的思路。未来的研究任务是评估将 S-SDM 与使用图像光谱学直接检测物种相结合来构建新一代生物多样性模型的可靠性,以准确地预测和监测随着时间和空间的生态集合体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecf7/8361206/2690739c69e8/41598_2021_96047_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验