Neurobiology of Cognition Laboratory, Center for Neural Science, New York University, New York, NY, USA; Neuroscience Institute at the NYU Langone Medical Center, New York, NY, USA.
Neurobiology of Cognition Laboratory, Center for Neural Science, New York University, New York, NY, USA.
Neuroscience. 2023 Oct 1;529:129-147. doi: 10.1016/j.neuroscience.2023.08.012. Epub 2023 Aug 15.
We consider the possibility of applying game theory to analysis and modeling of neurobiological systems. Specifically, the basic properties and features of information asymmetric signaling games are considered and discussed as having potential to explain diverse neurobiological phenomena; we focus on neuronal action potential discharge that can represent cognitive variables in memory and purposeful behavior. We begin by arguing that there is a pressing need for conceptual frameworks that can permit analysis and integration of information and explanations across many scales of biological function including gene regulation, molecular and biochemical signaling, cellular and metabolic function, neuronal population, and systems level organization to generate plausible hypotheses across these scales. Developing such integrative frameworks is crucial if we are to understand cognitive functions like learning, memory, and perception. The present work focuses on systems neuroscience organized around the connected brain regions of the entorhinal cortex and hippocampus. These areas are intensely studied in rodent subjects as model neuronal systems that undergo activity-dependent synaptic plasticity to form neuronal circuits and represent memories and spatial knowledge used for purposeful navigation. Examples of cognition-related spatial information in the observed neuronal discharge of hippocampal place cell populations and medial entorhinal head-direction cell populations are used to illustrate possible challenges to information maximization concepts. It may be natural to explain these observations using the ideas and features of information asymmetric signaling games.
我们考虑将博弈论应用于神经生物学系统的分析和建模。具体来说,考虑并讨论了信息非对称信号博弈的基本性质和特征,因为它们具有解释多种神经生物学现象的潜力;我们专注于神经元动作电位的释放,它可以代表记忆和有目的行为中的认知变量。我们首先认为,迫切需要概念框架,以便能够在包括基因调控、分子和生化信号、细胞和代谢功能、神经元群体以及系统水平组织等多个生物学功能尺度上对信息和解释进行分析和整合,从而在这些尺度上产生合理的假设。如果我们要理解学习、记忆和感知等认知功能,那么开发这种综合性框架至关重要。目前的工作集中在以啮齿动物的内嗅皮层和海马体的连接脑区为中心的系统神经科学上。这些区域是作为经历活动依赖性突触可塑性以形成神经元回路并代表用于有目的导航的记忆和空间知识的模型神经元系统而在啮齿动物中进行深入研究的。使用海马体位置细胞群体和内侧内嗅头方向细胞群体的观察到的神经元放电中的与认知相关的空间信息的示例来说明信息最大化概念可能面临的挑战。使用信息非对称信号博弈的思想和特征来解释这些观察结果可能是自然的。