Tao Zui, Shen Bowen, Zhao Wenjin, Hu Nai Chao, Li Tingxin, Jiang Shengwei, Li Lizhong, Watanabe Kenji, Taniguchi Takashi, MacDonald Allan H, Shan Jie, Mak Kin Fai
School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
Nat Nanotechnol. 2024 Jan;19(1):28-33. doi: 10.1038/s41565-023-01492-2. Epub 2023 Aug 17.
The spin Hall effect (SHE), in which an electrical current generates a transverse spin current, plays an important role in spintronics for the generation and manipulation of spin-polarized electrons. The phenomenon originates from spin-orbit coupling. In general, stronger spin-orbit coupling favours larger SHEs but shorter spin relaxation times and diffusion lengths. However, correlated magnetic materials often do not support large SHEs. Achieving large SHEs, long-range spin transport and magnetism simultaneously in a single material is attractive for spintronics applications but has remained a challenge. Here we demonstrate a giant intrinsic SHE coexisting with ferromagnetism in AB-stacked MoTe/WSe moiré bilayers by direct magneto-optical imaging. Under moderate electrical currents with density <1 A m, we observe spin accumulation on transverse sample edges that nearly saturates the spin density. We also demonstrate long-range spin Hall transport and efficient non-local spin accumulation that is limited only by the device size (about 10 µm). The gate dependence shows that the giant SHE occurs only near the interaction-driven Chern insulating state. At low temperatures, it emerges after the quantum anomalous Hall breakdown. Our results demonstrate moiré engineering of Berry curvature and electronic correlation for potential spintronics applications.
自旋霍尔效应(SHE),即电流产生横向自旋电流,在自旋电子学中对于自旋极化电子的产生和操控起着重要作用。该现象源于自旋 - 轨道耦合。一般来说,更强的自旋 - 轨道耦合有利于产生更大的自旋霍尔效应,但自旋弛豫时间和扩散长度会更短。然而,关联磁性材料通常不支持大的自旋霍尔效应。在单一材料中同时实现大的自旋霍尔效应、长程自旋输运和磁性,对于自旋电子学应用具有吸引力,但仍然是一个挑战。在此,我们通过直接磁光成像证明了在AB堆叠的MoTe/WSe莫尔双层中存在与铁磁性共存的巨大本征自旋霍尔效应。在电流密度<1 A/m的中等电流下,我们观察到横向样品边缘的自旋积累,其自旋密度几乎饱和。我们还展示了长程自旋霍尔输运和仅受器件尺寸(约10 µm)限制的高效非局域自旋积累。栅极依赖性表明,巨大的自旋霍尔效应仅在相互作用驱动的陈绝缘态附近出现。在低温下,它在量子反常霍尔击穿之后出现。我们的结果展示了用于潜在自旋电子学应用的贝里曲率和电子关联的莫尔工程。