Suppr超能文献

从指纹嵴密度推断古代陶工的年龄和性别:一种数据驱动的贝叶斯混合建模方法。

Inferring the age and sex of ancient potters from fingerprint ridge densities: A data-driven, Bayesian mixture modelling approach.

作者信息

Burchill Andrew T, Sanders Akiva, Morgan Thomas J H

机构信息

School of Life Sciences, Arizona State University.

Department of Near Eastern Languages and Civilizations, University of Chicago.

出版信息

MethodsX. 2023 Jul 26;11:102292. doi: 10.1016/j.mex.2023.102292. eCollection 2023 Dec.

Abstract

The density of epidermal ridges in a fingerprint varies predictably by age and sex. Archaeologists are therefore interested in using recovered fingerprints to learn about the ancient people who produced them. Recent studies focus on estimating the age and sex of individuals by measuring their fingerprints with one of two similar metrics: mean ridge breadth (MRB) or ridge density (RD). Yet these attempts face several critical problems: expected values for adult females and adolescent males are inherently indistinguishable, and inter-assemblage variation caused by biological and technological differences cannot be easily estimated. Each of these factors greatly decreases the accuracy of predictions based on individual prints, and together they condemn this strategy to relative uselessness. However, information in fingerprints from across an assemblage can be pooled to generate a more accurate depiction of potter demographics. We present a new approach to epidermal ridge density analysis using Bayesian mixture models with the following key benefits:•Age and sex are estimated more accurately than existing methods by incorporating a data-driven understanding of how demographics and ridge density covary.•Uncertainty in demographic estimates is automatically quantified and included in output.•The Bayesian framework can be easily adapted to fit the unique needs of different researchers.

摘要

指纹中表皮嵴的密度会因年龄和性别而发生可预测的变化。因此,考古学家有兴趣利用所发现的指纹来了解留下指纹的古人。最近的研究集中在通过使用两种相似的指标之一来测量指纹,从而估计个体的年龄和性别:平均嵴宽度(MRB)或嵴密度(RD)。然而,这些尝试面临几个关键问题:成年女性和青少年男性的预期值在本质上难以区分,并且由生物和技术差异导致的组间变异也不容易估计。这些因素中的每一个都大大降低了基于个体指纹进行预测的准确性,并且它们共同使得这种策略几乎毫无用处。然而,来自一组指纹的信息可以汇总起来,以更准确地描绘陶工的人口统计学特征。我们提出了一种使用贝叶斯混合模型进行表皮嵴密度分析 的新方法,具有以下关键优势:

  • 通过纳入对人口统计学和嵴密度如何共同变化的数据驱动理解,年龄和性别的估计比现有方法更准确。

  • 人口统计学估计中的不确定性会自动量化并包含在输出中。

  • 贝叶斯框架可以很容易地进行调整,以满足不同研究人员的独特需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验