Clarke J, Neveu P, Khosla K E, Verhagen E, Vanner M R
QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom.
Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
Phys Rev Lett. 2023 Aug 4;131(5):053601. doi: 10.1103/PhysRevLett.131.053601.
Several optomechanics experiments are now entering the highly sought nonlinear regime where optomechanical interactions are large even for low light levels. Within this regime, new quantum phenomena and improved performance may be achieved; however, a corresponding theoretical formalism of cavity quantum optomechanics that captures the nonlinearities of both the radiation-pressure interaction and the cavity response is needed to unlock these capabilities. Here, we develop such a nonlinear cavity quantum optomechanical framework, which we then utilize to propose how position measurement can be performed beyond the breakdown of the linearized approximation. Our proposal utilizes optical general-dyne detection, ranging from single to dual homodyne, to obtain mechanical position information imprinted onto both the optical amplitude and phase quadratures and enables both pulsed and continuous modes of operation. These cavity optomechanical nonlinearities are now being confronted in a growing number of experiments, and our framework will allow a range of advances to be made in, e.g., quantum metrology, explorations of the standard quantum limit, and quantum measurement and control.
目前,有几个光力学实验正在进入备受关注的非线性区域,在这个区域中,即使在低光水平下,光机械相互作用也很强。在这个区域内,可能会实现新的量子现象并提高性能;然而,需要一种相应的腔量子光力学理论形式来捕捉辐射压力相互作用和腔响应的非线性,以释放这些能力。在这里,我们开发了这样一个非线性腔量子光力学框架,然后利用它来提出如何在超越线性化近似失效的情况下进行位置测量。我们的提议利用从单路到双路零差检测的光学广义零差检测,来获取印刻在光振幅和相位正交分量上的机械位置信息,并实现脉冲和连续操作模式。现在越来越多的实验正在面临这些腔光力学非线性,我们的框架将允许在例如量子计量学、标准量子极限的探索以及量子测量与控制等方面取得一系列进展。