Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
J Biol Chem. 2023 Sep;299(9):105165. doi: 10.1016/j.jbc.2023.105165. Epub 2023 Aug 16.
Attachment of polyubiquitin (poly-Ub) chains to proteins is a major posttranslational modification in eukaryotes. Linear ubiquitin chain assembly complex, consisting of HOIP (HOIL-1-interacting protein), HOIL-1L (heme-oxidized IRP2 Ub ligase 1), and SHARPIN (Shank-associated RH domain-interacting protein), specifically synthesizes "head-to-tail" poly-Ub chains, which are linked via the N-terminal methionine α-amino and C-terminal carboxylate of adjacent Ub units and are thus commonly called "linear" poly-Ub chains. Linear ubiquitin chain assembly complex-assembled linear poly-Ub chains play key roles in immune signaling and suppression of cell death and have been associated with immune diseases and cancer; HOIL-1L is one of the proteins known to selectively bind linear poly-Ub via its Npl4 zinc finger (NZF) domain. Although the structure of the bound form of the HOIL-1L NZF domain with linear di-Ub is known, several aspects of the recognition specificity remain unexplained. Here, we show using NMR and orthogonal biophysical methods, how the NZF domain evolves from a free to the specific linear di-Ub-bound state while rejecting other potential Ub species after weak initial binding. The solution structure of the free NZF domain revealed changes in conformational stability upon linear Ub binding, and interactions between the NZF core and tail revealed conserved electrostatic contacts, which were sensitive to charge modulation at a reported phosphorylation site: threonine-207. Phosphomimetic mutations reduced linear Ub affinity by weakening the integrity of the linear di-Ub-bound conformation. The described molecular determinants of linear di-Ub binding provide insight into the dynamic aspects of the Ub code and the NZF domain's role in full-length HOIL-1L.
多聚泛素(poly-Ub)链在真核生物中的附着是一种主要的翻译后修饰。由 HOIP(HOIL-1 相互作用蛋白)、HOIL-1L(血红素氧化 IRP2 Ub 连接酶 1)和 SHARPIN(Shank 相关 RH 结构域相互作用蛋白)组成的线性泛素链组装复合物,特异性合成“头到尾”的多聚-Ub 链,这些链通过相邻 Ub 单元的 N 端甲硫氨酸α-氨基和 C 端羧基连接,因此通常称为“线性”多聚-Ub 链。线性泛素链组装复合物组装的线性多聚-Ub 链在免疫信号转导和抑制细胞死亡中发挥关键作用,并与免疫疾病和癌症有关;HOIL-1L 是已知通过其 Npl4 锌指(NZF)结构域选择性结合线性多聚-Ub 的蛋白质之一。虽然 HOIL-1L NZF 结构域与线性二聚泛素结合的结合形式的结构是已知的,但识别特异性的几个方面仍未得到解释。在这里,我们使用 NMR 和正交生物物理方法表明,NZF 结构域如何从自由状态进化到特异性线性二聚泛素结合状态,同时在弱初始结合后拒绝其他潜在的 Ub 物质。游离 NZF 结构域的溶液结构揭示了线性 Ub 结合后构象稳定性的变化,并且 NZF 核心与尾部之间的相互作用揭示了保守的静电接触,这些接触对报道的磷酸化位点:苏氨酸-207 的电荷调制敏感。磷酸模拟突变通过削弱线性二聚泛素结合构象的完整性降低了线性 Ub 的亲和力。所描述的线性二聚泛素结合的分子决定因素提供了对 Ub 密码动态方面以及 NZF 结构域在全长 HOIL-1L 中的作用的深入了解。