Department of Chemistry, New York University.
Department of Chemistry, New York University; Simons Center for Computational Physical Chemistry, New York University.
J Biol Chem. 2023 Sep;299(9):105169. doi: 10.1016/j.jbc.2023.105169. Epub 2023 Aug 16.
Actin-related protein 2/3 complex (Arp2/3 complex) catalyzes the nucleation of branched actin filaments that push against membranes in processes like cellular motility and endocytosis. During activation by WASP proteins, the complex must bind WASP and engage the side of a pre-existing (mother) filament before a branched filament is nucleated. Recent high-resolution structures of activated Arp2/3 complex revealed two major sets of activating conformational changes. How these activating conformational changes are triggered by interactions of Arp2/3 complex with actin filaments and WASP remains unclear. Here we use a recent high-resolution structure of Arp2/3 complex at a branch junction to design all-atom molecular dynamics simulations that elucidate the pathway between the active and inactive states. We ran a total of ∼4.6 microseconds of both unbiased and steered all-atom molecular dynamics simulations starting from three different binding states, including Arp2/3 complex within a branch junction, bound only to a mother filament, and alone in solution. These simulations indicate that the contacts with the mother filament are mostly insensitive to the massive rigid body motion that moves Arp2 and Arp3 into a short pitch helical (filament-like) arrangement, suggesting actin filaments alone do not stimulate the short pitch conformational change. In contrast, contacts with the mother filament stabilize subunit flattening in Arp3, an intrasubunit change that converts Arp3 from a conformation that mimics an actin monomer to one that mimics a filamentous actin subunit. Our results support a multistep activation pathway that has important implications for understanding how WASP-mediated activation allows Arp2/3 complex to assemble force-producing actin networks.
肌动蛋白相关蛋白 2/3 复合物(Arp2/3 复合物)催化分支肌动蛋白丝的成核,这些丝在细胞运动和胞吞等过程中推动膜。在被 Wasp 蛋白激活时,该复合物必须在分支丝成核之前结合 Wasp 并与预先存在的(母)丝的一侧结合。最近激活的 Arp2/3 复合物的高分辨率结构揭示了两组主要的激活构象变化。这些激活构象变化如何通过 Arp2/3 复合物与肌动蛋白丝和 Wasp 的相互作用触发仍不清楚。在这里,我们使用最近的分支结处的 Arp2/3 复合物的高分辨率结构来设计全原子分子动力学模拟,阐明了从活性和非活性状态之间的途径。我们总共进行了约 4.6 微秒的无偏和导向的全原子分子动力学模拟,从三个不同的结合状态开始,包括分支结处的 Arp2/3 复合物,仅与母丝结合,以及单独在溶液中。这些模拟表明,与母丝的接触在很大程度上不受将 Arp2 和 Arp3 移动到短螺距螺旋(丝状)排列的大规模刚体运动的影响,这表明肌动蛋白丝本身不会刺激短螺距构象变化。相比之下,与母丝的接触稳定了 Arp3 中亚基的扁平化,这是一种亚基内的变化,将 Arp3 从模拟肌动蛋白单体的构象转换为模拟丝状肌动蛋白亚基的构象。我们的结果支持一个多步骤的激活途径,这对理解 Wasp 介导的激活如何允许 Arp2/3 复合物组装产生力的肌动蛋白网络具有重要意义。