Suppr超能文献

通过无监督机器学习识别非酒精性脂肪性肝病患者预后不良相关的临床表型。

Identification of clinical phenotypes associated with poor prognosis in patients with nonalcoholic fatty liver disease via unsupervised machine learning.

作者信息

Ito Takanori, Morooka Hikaru, Takahashi Hirokazu, Fujii Hideki, Iwaki Michihiro, Hayashi Hideki, Toyoda Hidenori, Oeda Satoshi, Hyogo Hideyuki, Kawanaka Miwa, Morishita Asahiro, Munekage Kensuke, Kawata Kazuhito, Tsutsumi Tsubasa, Sawada Koji, Maeshiro Tatsuji, Tobita Hiroshi, Yoshida Yuichi, Naito Masafumi, Araki Asuka, Arakaki Shingo, Kawaguchi Takumi, Noritake Hidenao, Ono Masafumi, Masaki Tsutomu, Yasuda Satoshi, Tomita Eiichi, Yoneda Masato, Tokushige Akihiro, Ishigami Masatoshi, Kamada Yoshihiro, Ueda Shinichiro, Aishima Shinichi, Sumida Yoshio, Nakajima Atsushi, Okanoue Takeshi

机构信息

Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.

Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.

出版信息

J Gastroenterol Hepatol. 2023 Oct;38(10):1832-1839. doi: 10.1111/jgh.16326. Epub 2023 Aug 19.

Abstract

BACKGROUND AND AIMS

Both fibrosis status and body weight are important for assessing prognosis in nonalcoholic fatty liver disease (NAFLD). The aim of this study was to identify population clusters for specific clinical outcomes based on fibrosis-4 (FIB-4) index and body mass index (BMI) using an unsupervised machine learning method.

METHODS

We conducted a multicenter study of 1335 biopsy-proven NAFLD patients from Japan. Using the Gaussian mixture model to divide the cohort into clusters based on FIB-4 index and BMI, we investigated prognosis for these clusters.

RESULTS

The cohort consisted of 223 cases (16.0%) with advanced fibrosis (F3-4) as assessed from liver biopsy. Median values of BMI and FIB-4 index were 27.3 kg/m and 1.67. The patients were divided into four clusters by Bayesian information criterion, and all-cause mortality was highest in cluster d, followed by cluster b (P = 0.001). Regarding the characteristics of each cluster, clusters d and b presented a high FIB-4 index (median 5.23 and 2.23), cluster a presented the lowest FIB-4 index (median 0.78), and cluster c was associated with moderate FIB-4 level (median 1.30) and highest BMI (median 34.3 kg/m ). Clusters a and c had lower mortality rates than clusters b and d. However, all-cause of death in clusters a and c was unrelated to liver disease.

CONCLUSIONS

Our clustering approach found that the FIB-4 index is an important predictor of mortality in NAFLD patients regardless of BMI. Additionally, non-liver-related diseases were identified as the causes of death in NAFLD patients with low FIB-4 index.

摘要

背景与目的

纤维化状态和体重对于评估非酒精性脂肪性肝病(NAFLD)的预后均很重要。本研究的目的是使用无监督机器学习方法,基于纤维化-4(FIB-4)指数和体重指数(BMI)确定特定临床结局的人群聚类。

方法

我们对来自日本的1335例经活检证实的NAFLD患者进行了一项多中心研究。使用高斯混合模型根据FIB-4指数和BMI将队列分为不同聚类,我们研究了这些聚类的预后情况。

结果

根据肝活检评估,该队列包括223例(16.0%)晚期纤维化(F3-4)患者。BMI和FIB-4指数的中位数分别为27.3kg/m²和1.67。根据贝叶斯信息准则将患者分为四个聚类,全因死亡率在聚类d中最高,其次是聚类b(P = 0.001)。关于每个聚类的特征,聚类d和b呈现高FIB-4指数(中位数分别为5.23和2.23),聚类a呈现最低FIB-4指数(中位数为0.78),聚类c与中等FIB-4水平(中位数为1.30)和最高BMI(中位数为34.3kg/m²)相关。聚类a和c的死亡率低于聚类b和d。然而,聚类a和c中的全因死亡与肝脏疾病无关。

结论

我们的聚类方法发现,无论BMI如何,FIB-4指数都是NAFLD患者死亡率的重要预测指标。此外,低FIB-4指数的NAFLD患者的死亡原因被确定为非肝脏相关疾病。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验