Suppr超能文献

使用深度学习和常规苏木精-伊红染色预测人乳头瘤病毒(HPV)关联,可对口咽癌患者进行细致分层。

Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients.

作者信息

Klein Sebastian, Wuerdemann Nora, Demers Imke, Kopp Christopher, Quantius Jennifer, Charpentier Arthur, Tolkach Yuri, Brinker Klaus, Sharma Shachi Jenny, George Julie, Hess Jochen, Stögbauer Fabian, Lacko Martin, Struijlaart Marijn, van den Hout Mari F C M, Wagner Steffen, Wittekindt Claus, Langer Christine, Arens Christoph, Buettner Reinhard, Quaas Alexander, Reinhardt Hans Christian, Speel Ernst-Jan, Klussmann Jens Peter

机构信息

Department of Hematology and Stem Cell Transplantation, University Duisburg-Essen, University Hospital Essen, Essen, Germany.

Institute of Pathology, Medical Faculty, University Hospital Cologne, Cologne, Germany.

出版信息

NPJ Digit Med. 2023 Aug 19;6(1):152. doi: 10.1038/s41746-023-00901-z.

Abstract

Human Papilloma Virus (HPV)-associated oropharyngeal squamous cell cancer (OPSCC) represents an OPSCC subgroup with an overall good prognosis with a rising incidence in Western countries. Multiple lines of evidence suggest that HPV-associated tumors are not a homogeneous tumor entity, underlining the need for accurate prognostic biomarkers. In this retrospective, multi-institutional study involving 906 patients from four centers and one database, we developed a deep learning algorithm (OPSCCnet), to analyze standard H&E stains for the calculation of a patient-level score associated with prognosis, comparing it to combined HPV-DNA and p16-status. When comparing OPSCCnet to HPV-status, the algorithm showed a good overall performance with a mean area under the receiver operator curve (AUROC) = 0.83 (95% CI = 0.77-0.9) for the test cohort (n = 639), which could be increased to AUROC = 0.88 by filtering cases using a fixed threshold on the variance of the probability of the HPV-positive class - a potential surrogate marker of HPV-heterogeneity. OPSCCnet could be used as a screening tool, outperforming gold standard HPV testing (OPSCCnet: five-year survival rate: 96% [95% CI = 90-100%]; HPV testing: five-year survival rate: 80% [95% CI = 71-90%]). This could be confirmed using a multivariate analysis of a three-tier threshold (OPSCCnet: high HR = 0.15 [95% CI = 0.05-0.44], intermediate HR = 0.58 [95% CI = 0.34-0.98] p = 0.043, Cox proportional hazards model, n = 211; HPV testing: HR = 0.29 [95% CI = 0.15-0.54] p < 0.001, Cox proportional hazards model, n = 211). Collectively, our findings indicate that by analyzing standard gigapixel hematoxylin and eosin (H&E) histological whole-slide images, OPSCCnet demonstrated superior performance over p16/HPV-DNA testing in various clinical scenarios, particularly in accurately stratifying these patients.

摘要

人乳头瘤病毒(HPV)相关的口咽鳞状细胞癌(OPSCC)是口咽鳞状细胞癌的一个亚组,总体预后良好,在西方国家发病率呈上升趋势。多项证据表明,HPV相关肿瘤并非同质的肿瘤实体,这凸显了准确预后生物标志物的必要性。在这项涉及来自四个中心和一个数据库的906名患者的回顾性多机构研究中,我们开发了一种深度学习算法(OPSCCnet),用于分析标准苏木精和伊红(H&E)染色切片,以计算与预后相关的患者水平评分,并将其与HPV-DNA和p16状态相结合进行比较。将OPSCCnet与HPV状态进行比较时,该算法在测试队列(n = 639)中表现出良好的整体性能,受试者操作特征曲线下面积(AUROC)平均值 = 0.83(95%置信区间 = 0.77 - 0.9),通过使用HPV阳性类概率方差的固定阈值过滤病例,AUROC可提高到0.88,这是HPV异质性的一个潜在替代标志物。OPSCCnet可作为一种筛查工具,其性能优于金标准HPV检测(OPSCCnet:五年生存率:96% [95%置信区间 = 90 - 100%];HPV检测:五年生存率:80% [95%置信区间 = 71 - 90%])。这可以通过对三层阈值的多变量分析得到证实(OPSCCnet:高风险比 = 0.15 [95%置信区间 = 0.05 - 0.44],中等风险比 = 0.58 [95%置信区间 = 0.34 - 0.98] p = 0.043,Cox比例风险模型,n = 211;HPV检测:风险比 = 0.29 [95%置信区间 = 0.15 - 0.54] p < 0.001,Cox比例风险模型,n = 211)。总体而言,我们的研究结果表明,通过分析标准的千兆像素苏木精和伊红(H&E)组织学全切片图像,OPSCCnet在各种临床场景中表现出优于p16/HPV-DNA检测的性能,特别是在准确分层这些患者方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验