Suppr超能文献

铁/氮共掺杂生物炭源于回收的蓝藻,用于高效过一硫酸盐活化和氧氟沙星降解:非自由基途径中 Fe/N 的协同作用。

Iron/nitrogen co-doped biochar derived from salvaged cyanobacterial for efficient peroxymonosulfate activation and ofloxacin degradation: Synergistic effect of Fe/N in non-radical path.

机构信息

School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.

School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Suzhou Institute of Environmental Sciences, Postdoctoral Innovation and Practice Base of Jiangsu Province, Suzhou 21500, China.

出版信息

J Colloid Interface Sci. 2023 Dec 15;652(Pt A):350-361. doi: 10.1016/j.jcis.2023.08.096. Epub 2023 Aug 16.

Abstract

A green, low-cost, high-performance Fe/N co-doped biochar material (Fe-N@C) was synthesized using salvaged cyanobacteria without other extra precursors for peroxymonosulfate (PMS) activation and ofloxacin (OFX) degradation. With the increased pyrolysis temperature, the graphitization degree, the specific surface area and the corresponding groups like OH, COO etc. for Fe-N@C tended to increase, resulting in a greater OFX adsorption. However, the total amount of Fe-N and graphitic nitrogen groups in the Fe-N@C composites was firstly increased and then decreased, which reached the highest at 800 °C (Fe-N@C-800). All these changes of functional species ascribed to the strong interaction between Fe, N and C led to the highest defect degree of Fe-N@C-800, resulting the highest OFX removal efficiency of 95.0 %. OFX removal experiments indicated the adsorption process promoted the total OFX degradation for different functional groups on Fe-N@C composites separately dominated the process of OFX adsorption and PMS catalysis. Radical quenching and electron paramagnetic resonance (EPR) measurements proved free radical and non-free radical pathways participated in Fe-N@C/PMS system. The non-free radicals based on O and high-valent iron-oxo species played a more important role in OFX degradation, leading to the minimal effect of co-existing anions and the high universality for other antibiotic pollutants. Fe-N was utilized as the main catalytic sites and graphitic nitrogen contributed more to the electron transfer for PMS activation, whose synergistic effect efficiently facilitated OFX degradation. Finally, the possible degradation route of OFX in the Fe-N@C-800/PMS system was proposed. All these results will provide the new insights into the intrinsic mechanism of Fe/N species in carbon-based materials for PMS activation.

摘要

一种绿色、低成本、高性能的 Fe/N 共掺杂生物炭材料(Fe-N@C)被合成出来,使用的是回收的蓝藻,没有其他额外的前体来激活过一硫酸盐(PMS)和降解氧氟沙星(OFX)。随着热解温度的升高,Fe-N@C 的石墨化程度、比表面积和相应的 OH、COO 等基团增加,导致 OFX 的吸附增加。然而,Fe-N@C 复合材料中 Fe-N 和石墨型氮基团的总量先增加后减少,在 800°C(Fe-N@C-800)时达到最高。这些功能物种的变化归因于 Fe、N 和 C 之间的强相互作用,导致 Fe-N@C-800 的缺陷程度最高,从而使 OFX 的去除效率最高达到 95.0%。OFX 去除实验表明,吸附过程促进了总 OFX 的降解,不同官能团在 Fe-N@C 复合材料上的单独作用分别主导了 OFX 的吸附和 PMS 催化过程。自由基猝灭和电子顺磁共振(EPR)测量证明,自由基和非自由基途径都参与了 Fe-N@C/PMS 体系。基于 O 和高价铁氧物种的非自由基在 OFX 降解中起着更重要的作用,导致共存阴离子的影响最小,对其他抗生素污染物的通用性高。Fe-N 被用作主要的催化位点,石墨型氮对 PMS 激活的电子转移贡献更大,它们的协同作用有效地促进了 OFX 的降解。最后,提出了在 Fe-N@C-800/PMS 体系中 OFX 的可能降解途径。这些结果将为 Fe/N 物种在碳基材料中激活 PMS 的内在机制提供新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验