Corbin Nadège, Oliveira Rita, Raynaud Quentin, Di Domenicantonio Giulia, Draganski Bogdan, Kherif Ferath, Callaghan Martina F, Lutti Antoine
Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS/University Bordeaux, Bordeaux, France; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK.
Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
J Neurosci Methods. 2023 Oct 1;398:109950. doi: 10.1016/j.jneumeth.2023.109950. Epub 2023 Aug 19.
Consistent noise variance across data points (i.e. homoscedasticity) is required to ensure the validity of statistical analyses of MRI data conducted using linear regression methods. However, head motion leads to degradation of image quality, introducing noise heteroscedasticity into ordinary-least square analyses.
The recently introduced QUIQI method restores noise homoscedasticity by means of weighted least square analyses in which the weights, specific for each dataset of an analysis, are computed from an index of motion-induced image quality degradation. QUIQI was first demonstrated in the context of brain maps of the MRI parameter R2 * , which were computed from a single set of images with variable echo time. Here, we extend this framework to quantitative maps of the MRI parameters R1, R2 * , and MTsat, computed from multiple sets of images.
QUIQI restores homoscedasticity in analyses of quantitative MRI data computed from multiple scans. QUIQI allows for optimization of the noise model by using metrics quantifying heteroscedasticity and free energy.
QUIQI restores homoscedasticity more effectively than insertion of an image quality index in the analysis design and yields higher sensitivity than simply removing the datasets most corrupted by head motion from the analysis.
QUIQI provides an optimal approach to group-wise analyses of a range of quantitative MRI parameter maps that is robust to inherent homoscedasticity.
为确保使用线性回归方法对MRI数据进行统计分析的有效性,需要数据点之间具有一致的噪声方差(即同方差性)。然而,头部运动导致图像质量下降,在普通最小二乘分析中引入噪声异方差性。
最近引入的QUIQI方法通过加权最小二乘分析恢复噪声同方差性,其中针对分析的每个数据集的权重是根据运动引起的图像质量下降指数计算得出的。QUIQI最初是在从具有可变回波时间的单组图像计算出的MRI参数R2 *的脑图谱背景下得到证明的。在此,我们将此框架扩展到从多组图像计算出的MRI参数R1、R2 *和MTsat的定量图谱。
QUIQI在对多扫描计算出的定量MRI数据的分析中恢复了同方差性。QUIQI允许通过使用量化异方差性和自由能的指标来优化噪声模型。
QUIQI比在分析设计中插入图像质量指数更有效地恢复同方差性,并且比简单地从分析中去除受头部运动影响最严重的数据集具有更高的灵敏度。
QUIQI为一系列定量MRI参数图谱的组分析提供了一种最佳方法,该方法对固有的同方差性具有鲁棒性。