Suppr超能文献

基于自适应动态规划的非完整移动机器人自学习滑模控制

Self-learning sliding mode control based on adaptive dynamic programming for nonholonomic mobile robots.

作者信息

Ma Qingwen, Zhang Xinglong, Xu Xin, Yang Yueneng, Wu Edmond Q

机构信息

College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.

College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.

出版信息

ISA Trans. 2023 Nov;142:136-147. doi: 10.1016/j.isatra.2023.08.005. Epub 2023 Aug 9.

Abstract

This paper proposes a self-learning sliding mode control (SlSMC) strategy with stability guarantee for the trajectory tracking of nonholonomic mobile robots (NMRs) under matched uncertainties, which improves the control performance of NMRs by optimizing the reaching law and the sliding mode surface of SMC as well as retaining the finite-time convergence and the robustness to uncertainties. In the presence of adverse factors such as skidding, slipping and environmental noise, the kinematic model of NMRs is reconstructed and an integral terminal sliding mode controller is designed for the trajectory tracking of NMRs. Then, based on the sliding mode controller, the proposed control strategy formulates the optimization of the SMC's reaching law and the sliding mode surface under stability constraints as two asynchronous optimal control problems with control constraints. Meanwhile, an online continuous-time receding-horizon optimization mechanism based on an actor-critic algorithm is proposed to solve the optimal problems asynchronously and improve online learning efficiency. The stability and the convergence of the proposed strategy are validated both in theory and simulations. Furthermore, extensive contrastive simulation results illustrate that the proposed receding horizon learning-based control strategy outperforms three recent methods in control performance. Finally, experiments of the proposed self-learning SMC strategy are carried out based on a real intelligent vehicle, and the experimental results also verify that the proposed method can meet the actual control needs of NMRs.

摘要

本文提出了一种具有稳定性保证的自学习滑模控制(SlSMC)策略,用于在匹配不确定性下非完整移动机器人(NMR)的轨迹跟踪,该策略通过优化滑模控制的趋近律和滑模面,同时保留有限时间收敛性和对不确定性的鲁棒性,提高了NMR的控制性能。在存在打滑、滑动和环境噪声等不利因素的情况下,重构了NMR的运动学模型,并设计了一种积分终端滑模控制器用于NMR的轨迹跟踪。然后,基于滑模控制器,所提出的控制策略将在稳定性约束下对滑模控制的趋近律和滑模面的优化表述为两个具有控制约束的异步最优控制问题。同时,提出了一种基于演员-评论家算法的在线连续时间滚动时域优化机制,以异步求解最优问题并提高在线学习效率。从理论和仿真两方面验证了所提策略的稳定性和收敛性。此外,大量对比仿真结果表明,所提出的基于滚动时域学习的控制策略在控制性能上优于最近的三种方法。最后,基于实际智能车辆进行了所提自学习滑模控制策略的实验,实验结果也验证了所提方法能够满足NMR的实际控制需求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验