Xi Shuanghui, Hou Junxing, Yang Shuai, Wang Zhenghe, Li Shu-Hao, Wang Fan
School of Aerospace Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, P. R. China.
School of Aero Engine, Zhengzhou University of Aeronautics, Zhengzhou 450046, P. R. China.
ACS Omega. 2023 Aug 3;8(32):29150-29160. doi: 10.1021/acsomega.3c02335. eCollection 2023 Aug 15.
In this study, a kerosene surrogate model fuel containing 73% -dodecane, 14.7% 1,3,5-trimethylcyclohexane, and 12.3% -propylbenzene (percentage in mass) is developed by considering both the physical and chemical characteristics of practical aviation kerosene. By combining the small-size C-C (carbon number) core mechanism and the large hydrocarbon submechanisms, a low- and high-temperature chemical kinetic mechanism including 43 species and 136 reactions is constructed for the kerosene surrogate model fuel. The performance of the 43-species mechanism is validated by examining various experimental ignition delay times and laminar flame speeds of single component of -dodecane and practical kerosene. The predicted main species concentrations during the oxidation process in the jet-stirred reactor by this small-size mechanism exhibit generally acceptable performance with the corresponding experimental data of RP-3 kerosene. The results of brute force sensitivity analysis indicate that the mechanism retains key reaction paths. This relatively small size can be applied to the simulation of computational fluid dynamics to further explore the practical problems of aviation fuel application in engine.
在本研究中,通过考虑实际航空煤油的物理和化学特性,开发了一种煤油替代模型燃料,其包含73%的正十二烷、14.7%的1,3,5-三甲基环己烷和12.3%的丙苯(质量百分比)。通过结合小尺寸的C-C(碳原子数)核心机理和大尺寸的烃类子机理,为该煤油替代模型燃料构建了一个包含43种物质和136个反应的低温和高温化学动力学机理。通过考察正十二烷单组分以及实际煤油的各种实验着火延迟时间和层流火焰速度,验证了该43种物质机理的性能。利用该小尺寸机理预测的射流搅拌反应器氧化过程中的主要物质浓度与RP-3煤油的相应实验数据相比,表现出总体可接受的性能。强力敏感性分析结果表明该机理保留了关键反应路径。这种相对较小的尺寸可应用于计算流体动力学模拟,以进一步探索航空燃料在发动机中应用的实际问题。