Dabrowska Agnieszka, Botwina Pawel, Barreto-Duran Emilia, Kubisiak Agata, Obloza Magdalena, Synowiec Aleksandra, Szczepanski Artur, Targosz-Korecka Marta, Szczubialka Krzysztof, Nowakowska Maria, Pyrc Krzysztof
Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland.
Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.
Mater Today Bio. 2023 Aug 7;22:100763. doi: 10.1016/j.mtbio.2023.100763. eCollection 2023 Oct.
The battle against emerging viral infections has been uneven, as there is currently no broad-spectrum drug available to contain the spread of novel pathogens throughout the population. Consequently, the pandemic outbreak that occurred in early 2020 laid bare the almost empty state of the pandemic box. Therefore, the development of novel treatments with broad specificity has become a paramount concern in this post-pandemic era. Here, we propose copolymers of poly (sodium 2-(acrylamido)-2-methyl-1-propanesulfonate) (PAMPS) and poly (sodium 11-(acrylamido)undecanoate (AaU), both block (PAMPS-b-PAaU) and random (P(AMPS-co-AaU)) that show efficacy against a broad range of alpha and betacoronaviruses. Owing to their intricate architecture, these polymers exhibit a highly distinctive mode of action, modulating nano-mechanical properties of cells and thereby influencing viral replication. Through the employment of confocal and atomic force microscopy techniques, we discerned perturbations in actin and vimentin filaments, which correlated with modification of cellular elasticity and reduction of glycocalyx layer. Intriguingly, this process was reversible upon polymer removal from the cells. To ascertain the applicability of our findings, we assessed the efficacy and underlying mechanism of the inhibitors using fully differentiated human airway epithelial cultures, wherein near-complete abrogation of viral replication was documented. Given their mode of action, these polymers can be classified as biologically active nanomaterials that exploit a highly conserved molecular target-cellular plasticity-proffering the potential for truly broad-spectrum activity while concurrently for drug resistance development is minimal.
对抗新出现的病毒感染的战斗进展并不均衡,因为目前没有可用于遏制新型病原体在人群中传播的广谱药物。因此,2020年初爆发的大流行暴露出大流行应对手段几乎空白的状态。所以,开发具有广泛特异性的新型治疗方法已成为这个后疫情时代的首要关注点。在此,我们提出了聚(2-(丙烯酰胺基)-2-甲基-1-丙烷磺酸钠)(PAMPS)和聚(11-(丙烯酰胺基)十一酸钠(AaU))的共聚物,包括嵌段共聚物(PAMPS-b-PAaU)和无规共聚物(P(AMPS-co-AaU)),它们对多种甲型和乙型冠状病毒都显示出疗效。由于其复杂的结构,这些聚合物呈现出一种高度独特的作用方式,调节细胞的纳米力学性质,从而影响病毒复制。通过使用共聚焦和原子力显微镜技术,我们发现肌动蛋白和波形蛋白丝出现了扰动,这与细胞弹性的改变和糖萼层的减少相关。有趣的是,当聚合物从细胞中去除后,这个过程是可逆的。为了确定我们研究结果的适用性,我们使用完全分化的人气道上皮培养物评估了抑制剂的疗效和潜在机制,其中记录到病毒复制几乎完全被消除。鉴于其作用方式,这些聚合物可被归类为生物活性纳米材料,它们利用了一个高度保守的分子靶点——细胞可塑性,具有真正广谱活性的潜力,同时产生耐药性的可能性极小。