Mao Jingqin, Liu Longze, Atwa Yahya, Hou Junming, Wu Zhenxun, Shakeel Hamza
School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast BT7 1NN, U.K.
State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China.
ACS Meas Sci Au. 2023 May 30;3(4):287-300. doi: 10.1021/acsmeasuresciau.3c00012. eCollection 2023 Aug 16.
In this paper, we report on a printable glass-based manufacturing method and a new proof-of-concept colorimetric signal readout scheme for a dielectric barrier discharge (DBD)-type helium plasma photoionization detector. The sensor consists of a millimeter-sized glass chamber manufactured using a printable glass suspension. Plasma inside the chip is generated using a custom-built power supply (900 V and 83.6 kHz), and the detector uses ∼5 W of power. Our new detection scheme is based on detecting the change in the color of plasma after the introduction of target gases. The change in color is first captured by a smartphone camera as a video output. The recorded video is then processed and converted to an image light intensity vs retention time plot (gas chromatogram) using three standard color space models (red, green, blue (RGB), hue, saturation, lightness (HSL), and hue, saturation, value (HSV)) with RGB performing the best among the three models. We successfully detected three different categories of volatile organic compounds using our new detection scheme and a 30-m-long gas chromatography column: (1) straight-chain alkanes (-pentane, -hexane, -heptane, -octane, and -nonane), (2) aromatics (benzene, toluene, and ethylbenzene), and (3) polar compounds (acetone, ethanol, and dichloromethane). The best limit of detection of 10 ng was achieved for benzene at room temperature. Additionally, the device showed excellent performance for different types of sample mixtures consisting of three and five compounds. Our new detector readout method combined with our ability to print complex glass structures provides a new research avenue to analyze complex gas mixtures and their components.
在本文中,我们报告了一种基于可打印玻璃的制造方法以及一种用于介质阻挡放电(DBD)型氦等离子体光电离探测器的新的概念验证比色信号读出方案。该传感器由一个使用可打印玻璃悬浮液制造的毫米级玻璃腔室组成。芯片内部的等离子体通过定制电源(900 V和83.6 kHz)产生,探测器功耗约为5 W。我们的新检测方案基于检测引入目标气体后等离子体颜色的变化。颜色变化首先由智能手机摄像头作为视频输出捕获。然后使用三种标准颜色空间模型(红、绿、蓝(RGB)、色相、饱和度、明度(HSL)和色相、饱和度、值(HSV))对记录的视频进行处理并转换为图像光强度与保留时间图(气相色谱图),其中RGB在这三种模型中表现最佳。我们使用新的检测方案和一根30米长的气相色谱柱成功检测了三类不同的挥发性有机化合物:(1)直链烷烃(戊烷、己烷、庚烷、辛烷和壬烷),(2)芳烃(苯、甲苯和乙苯),以及(3)极性化合物(丙酮、乙醇和二氯甲烷)。在室温下,苯的最佳检测限达到10 ng。此外,该设备对由三种和五种化合物组成的不同类型样品混合物表现出优异的性能。我们的新探测器读出方法与打印复杂玻璃结构的能力相结合,为分析复杂气体混合物及其成分提供了一条新的研究途径。