Suppr超能文献

基于准确性、隐私性和可靠性的差分隐私贝叶斯神经网络

Differentially Private Bayesian Neural Networks on Accuracy, Privacy and Reliability.

作者信息

Zhang Qiyiwen, Bu Zhiqi, Chen Kan, Long Qi

机构信息

University of Pennsylvania.

出版信息

Mach Learn Knowl Discov Databases. 2023;13716:604-619. doi: 10.1007/978-3-031-26412-2_37. Epub 2023 Mar 17.

Abstract

Bayesian neural network (BNN) allows for uncertainty quantification in prediction, offering an advantage over regular neural networks that has not been explored in the differential privacy (DP) framework. We fill this important gap by leveraging recent development in Bayesian deep learning and privacy accounting to offer a more precise analysis of the trade-off between privacy and accuracy in BNN. We propose three DP-BNNs that characterize the weight uncertainty for the same network architecture in distinct ways, namely DP-SGLD (via the noisy gradient method), DP-BBP (via changing the parameters of interest) and DP-MC Dropout (via the model architecture). Interestingly, we show a new equivalence between DP-SGD and DP-SGLD, implying that some non-Bayesian DP training naturally allows for uncertainty quantification. However, the hyperparameters such as learning rate and batch size, can have different or even opposite effects in DP-SGD and DP-SGLD. Extensive experiments are conducted to compare DP-BNNs, in terms of privacy guarantee, prediction accuracy, uncertainty quantification, calibration, computation speed, and generalizability to network architecture. As a result, we observe a new tradeoff between the privacy and the reliability. When compared to non-DP and non-Bayesian approaches, DP-SGLD is remarkably accurate under strong privacy guarantee, demonstrating the great potential of DP-BNN in real-world tasks.

摘要

贝叶斯神经网络(BNN)允许在预测中进行不确定性量化,这是常规神经网络所不具备的优势,且该优势在差分隐私(DP)框架中尚未得到探索。我们利用贝叶斯深度学习和隐私计算的最新进展填补了这一重要空白,以便更精确地分析BNN中隐私与准确性之间的权衡。我们提出了三种DP-BNN,它们以不同方式刻画了相同网络架构的权重不确定性,即DP-SGLD(通过噪声梯度法)、DP-BBP(通过改变感兴趣的参数)和DP-MC Dropout(通过模型架构)。有趣的是,我们发现DP-SGD和DP-SGLD之间存在一种新的等价关系,这意味着一些非贝叶斯DP训练自然地允许进行不确定性量化。然而,诸如学习率和批量大小等超参数在DP-SGD和DP-SGLD中可能会产生不同甚至相反的效果。我们进行了广泛的实验,从隐私保证、预测准确性、不确定性量化、校准、计算速度以及对网络架构的通用性等方面对DP-BNN进行比较。结果,我们观察到了隐私与可靠性之间的一种新的权衡。与非DP和非贝叶斯方法相比,DP-SGLD在强隐私保证下具有显著的准确性,这表明DP-BNN在实际任务中具有巨大潜力。

相似文献

1
Differentially Private Bayesian Neural Networks on Accuracy, Privacy and Reliability.
Mach Learn Knowl Discov Databases. 2023;13716:604-619. doi: 10.1007/978-3-031-26412-2_37. Epub 2023 Mar 17.
3
Medical imaging deep learning with differential privacy.
Sci Rep. 2021 Jun 29;11(1):13524. doi: 10.1038/s41598-021-93030-0.
4
A(DP) SGD: Asynchronous Decentralized Parallel Stochastic Gradient Descent With Differential Privacy.
IEEE Trans Pattern Anal Mach Intell. 2022 Nov;44(11):8036-8047. doi: 10.1109/TPAMI.2021.3107796. Epub 2022 Oct 4.
5
Differentially Private Graph Neural Networks for Whole-Graph Classification.
IEEE Trans Pattern Anal Mach Intell. 2023 Jun;45(6):7308-7318. doi: 10.1109/TPAMI.2022.3228315. Epub 2023 May 5.
7
Encoding the Latent Posterior of Bayesian Neural Networks for Uncertainty Quantification.
IEEE Trans Pattern Anal Mach Intell. 2024 Apr;46(4):2027-2040. doi: 10.1109/TPAMI.2023.3328829. Epub 2024 Mar 6.
8
Balancing Learning Model Privacy, Fairness, and Accuracy With Early Stopping Criteria.
IEEE Trans Neural Netw Learn Syst. 2023 Sep;34(9):5557-5569. doi: 10.1109/TNNLS.2021.3129592. Epub 2023 Sep 1.
9
Uncertainty propagation for dropout-based Bayesian neural networks.
Neural Netw. 2021 Dec;144:394-406. doi: 10.1016/j.neunet.2021.09.005. Epub 2021 Sep 9.
10
Preserving differential privacy in deep neural networks with relevance-based adaptive noise imposition.
Neural Netw. 2020 May;125:131-141. doi: 10.1016/j.neunet.2020.02.001. Epub 2020 Feb 11.

引用本文的文献

本文引用的文献

1
Deep Learning with Gaussian Differential Privacy.
Harv Data Sci Rev. 2020;2020(23). doi: 10.1162/99608f92.cfc5dd25. Epub 2020 Sep 30.
2
Bayesian prediction of tissue-regulated splicing using RNA sequence and cellular context.
Bioinformatics. 2011 Sep 15;27(18):2554-62. doi: 10.1093/bioinformatics/btr444. Epub 2011 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验