Franchi Gianni, Bursuc Andrei, Aldea Emanuel, Dubuisson Severine, Bloch Isabelle
IEEE Trans Pattern Anal Mach Intell. 2024 Apr;46(4):2027-2040. doi: 10.1109/TPAMI.2023.3328829. Epub 2024 Mar 6.
Bayesian Neural Networks (BNNs) have long been considered an ideal, yet unscalable solution for improving the robustness and the predictive uncertainty of deep neural networks. While they could capture more accurately the posterior distribution of the network parameters, most BNN approaches are either limited to small networks or rely on constraining assumptions, e.g., parameter independence. These drawbacks have enabled prominence of simple, but computationally heavy approaches such as Deep Ensembles, whose training and testing costs increase linearly with the number of networks. In this work we aim for efficient deep BNNs amenable to complex computer vision architectures, e.g., ResNet-50 DeepLabv3+, and tasks, e.g., semantic segmentation and image classification, with fewer assumptions on the parameters. We achieve this by leveraging variational autoencoders (VAEs) to learn the interaction and the latent distribution of the parameters at each network layer. Our approach, called Latent-Posterior BNN (LP-BNN), is compatible with the recent BatchEnsemble method, leading to highly efficient (in terms of computation and memory during both training and testing) ensembles. LP-BNNs attain competitive results across multiple metrics in several challenging benchmarks for image classification, semantic segmentation, and out-of-distribution detection.
长期以来,贝叶斯神经网络(BNN)一直被视为一种理想但无法扩展的解决方案,用于提高深度神经网络的鲁棒性和预测不确定性。虽然它们可以更准确地捕捉网络参数的后验分布,但大多数BNN方法要么局限于小型网络,要么依赖于约束假设,例如参数独立性。这些缺点使得简单但计算量大的方法(如深度集成)得以突出,其训练和测试成本随网络数量线性增加。在这项工作中,我们旨在实现适用于复杂计算机视觉架构(如ResNet-50 DeepLabv3+)和任务(如图语义分割和图像分类)的高效深度BNN,对参数的假设更少。我们通过利用变分自编码器(VAE)来学习每个网络层参数的相互作用和潜在分布来实现这一目标。我们的方法称为潜在后验BNN(LP-BNN),与最近的批集成方法兼容,从而产生高效的(在训练和测试期间的计算和内存方面)集成。LP-BNN在图像分类、语义分割和分布外检测等几个具有挑战性的基准测试中,在多个指标上取得了有竞争力的结果。