Lau Shun-Fat, Fu Amy K Y, Ip Nancy Y
Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China.
Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.
J Neurochem. 2023 Sep;166(6):891-903. doi: 10.1111/jnc.15933. Epub 2023 Aug 21.
Microglia maintain brain homeostasis through their ability to survey and phagocytose danger-associated molecular patterns (DAMPs). In Alzheimer's disease (AD), microglial phagocytic clearance regulates the turnover of neurotoxic DAMPs including amyloid beta (Aβ) and hyperphosphorylated tau. To mediate DAMP clearance, microglia express a repertoire of surface receptors to sense DAMPs; the activation of these receptors subsequently triggers a chemotaxis-to-phagocytosis functional transition in microglia. Therefore, the interaction between microglial receptors and DAMPs plays a critical role in controlling microglial DAMP clearance and AD pathogenesis. However, there is no comprehensive overview on how microglial sensome receptors interact with DAMPs and regulate various microglial functions, including chemotaxis and phagocytosis. In this review, we discuss the important axes of receptor-ligand interaction that control different microglial functions and their roles in AD pathogenesis. First, we summarize how the accumulation and structural changes of DAMPs trigger microglial functional impairment, including impaired DAMP clearance and aberrant synaptic pruning, in AD. Then, we discuss the important receptor-ligand axes that restore microglial DAMP clearance in AD and aging. These findings suggest that targeting microglial chemotaxis-the first critical step of the microglial chemotaxis-to-phagocytosis state transition-can promote microglial DAMP clearance in AD. Thus, our review highlights the importance of microglial chemotaxis in promoting microglial clearance activity in AD. Further detailed investigations are essential to identify the molecular machinery that controls microglial chemotaxis in AD.
小胶质细胞通过其监测和吞噬危险相关分子模式(DAMPs)的能力来维持大脑内环境稳定。在阿尔茨海默病(AD)中,小胶质细胞的吞噬清除作用调节神经毒性DAMPs的周转,包括淀粉样β蛋白(Aβ)和过度磷酸化的tau蛋白。为介导DAMPs的清除,小胶质细胞表达一系列表面受体以感知DAMPs;这些受体的激活随后触发小胶质细胞从趋化作用到吞噬作用的功能转变。因此,小胶质细胞受体与DAMPs之间的相互作用在控制小胶质细胞DAMPs清除和AD发病机制中起着关键作用。然而,关于小胶质细胞传感体受体如何与DAMPs相互作用并调节包括趋化作用和吞噬作用在内的各种小胶质细胞功能,目前尚无全面综述。在本综述中,我们讨论了控制不同小胶质细胞功能的受体-配体相互作用的重要轴及其在AD发病机制中的作用。首先,我们总结了在AD中DAMPs的积累和结构变化如何触发小胶质细胞功能障碍,包括DAMPs清除受损和异常的突触修剪。然后,我们讨论了在AD和衰老过程中恢复小胶质细胞DAMPs清除的重要受体-配体轴。这些发现表明,靶向小胶质细胞趋化作用——小胶质细胞从趋化作用到吞噬作用状态转变的第一个关键步骤——可以促进AD中小胶质细胞DAMPs的清除。因此,我们的综述强调了小胶质细胞趋化作用在促进AD中小胶质细胞清除活性方面的重要性。进一步详细研究对于确定控制AD中小胶质细胞趋化作用的分子机制至关重要。