State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, Guangdong, China.
Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.
Genome Biol Evol. 2023 Sep 4;15(9). doi: 10.1093/gbe/evad155.
Multichromosomal mitochondrial genome (mitogenome) structures have repeatedly evolved in many lineages of angiosperms. However, the underlying mechanism remains unclear. The mitogenomes of three genera of Balanophoraceae, namely Lophophytum, Ombrophytum, and Rhopalocnemis, have already been sequenced and assembled, all showing a highly multichromosomal structure, albeit with different genome and chromosome sizes. It is expected that characterization of additional lineages of this family may expand the knowledge of mitogenome diversity and provide insights into the evolution of the plant mitogenome structure and size. Here, we assembled and characterized the mitogenome of Thonningia sanguinea, which, together with Balanophora, forms a clade sister to the clade comprising Lophophytum, Ombrophytum, and Rhopalocnemis. The mitogenome of T. sanguinea possesses a multichromosomal structure of 18 circular chromosomes of 8.7-19.2 kb, with a total size of 246,247 bp. There are very limited shared regions and poor chromosomal correspondence between T. sanguinea and other Balanophoraceae species, suggesting frequent rearrangements and rapid sequence turnover. Numerous medium- and small-sized repeats were identified in the T. sanguinea mitogenome; however, no repeat-mediated recombination was detected, which was verified by Illumina reads mapping and PCR experiments. Intraspecific mitogenome variations in T. sanguinea are mostly insertions and deletions, some of which can lead to degradation of perfect repeats in one or two accessions. Based on the mitogenome features of T. sanguinea, we propose a mechanism to explain the evolution of a multichromosomal mitogenome from a master circle, which involves mutation in organellar DNA replication, recombination and repair genes, decrease of recombination, and repeat degradation.
多染色体线粒体基因组(mitogenome)结构在被子植物的许多谱系中反复进化。然而,其潜在机制仍不清楚。三个蛇菰科属的线粒体基因组,即萝蘑属、沼地菰属和蛇菰属,已经被测序和组装,都表现出高度的多染色体结构,尽管基因组和染色体大小不同。预计对该科更多谱系的特征描述可能会扩展对线粒体基因组多样性的认识,并深入了解植物线粒体基因组结构和大小的进化。在这里,我们组装并描述了血齿草(Thonningia sanguinea)的线粒体基因组,它与蛇菰属一起形成一个分支,与包含萝蘑属、沼地菰属和蛇菰属的分支并列。血齿草的线粒体基因组具有多染色体结构,由 18 条大小为 8.7-19.2kb 的圆形染色体组成,总大小为 246,247bp。在血齿草和其他蛇菰科物种之间,共享区域非常有限,染色体对应性差,这表明频繁的重排和快速的序列更替。在血齿草的线粒体基因组中鉴定出大量的中、小大小的重复序列;然而,没有检测到重复介导的重组,这通过 Illumina 读取映射和 PCR 实验得到了验证。血齿草的种内线粒体基因组变异主要是插入和缺失,其中一些可能导致一个或两个个体中完美重复序列的降解。基于血齿草的线粒体基因组特征,我们提出了一个从主环进化出多染色体线粒体基因组的机制,该机制涉及到细胞器 DNA 复制、重组和修复基因的突变、重组减少和重复序列的降解。