Varnavski Oleg, Giri Sajal Kumar, Chiang Tse-Min, Zeman Charles J, Schatz George C, Goodson Theodore
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109.
Department of Chemistry, Northwestern University, Evanston, IL 60208-3113.
Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2307719120. doi: 10.1073/pnas.2307719120. Epub 2023 Aug 21.
Multiphoton absorption of entangled photons offers ways for obtaining unique information about chemical and biological processes. Measurements with entangled photons may enable sensing biological signatures with high selectivity and at very low light levels to protect against photodamage. In this paper, we present a theoretical and experimental study of the excitation wavelength dependence of the entangled two-photon absorption (ETPA) process in a molecular system, which provides insights into how entanglement affects molecular spectra. We demonstrate that the ETPA excitation spectrum can be different from that of classical TPA as well as that for one-photon resonant absorption (OPA) with photons of doubled frequency. These results are modeled by assuming the ETPA cross-section is governed by a two-photon excited state radiative linewidth rather than by electron-phonon interactions, and this leads to excitation spectra that match the observed results. Further, we find that the two-photon-allowed states with highest TPA and ETPA intensities have high electronic entanglements, with ETPA especially favoring states with the longest radiative lifetimes. These results provide concepts for the development of quantum light-based spectroscopy and microscopy that will lead to much higher efficiency of ETPA sensors and low-intensity detection schemes.
纠缠光子的多光子吸收为获取有关化学和生物过程的独特信息提供了途径。利用纠缠光子进行测量可以在非常低的光强下以高选择性检测生物特征,从而防止光损伤。在本文中,我们对分子系统中纠缠双光子吸收(ETPA)过程的激发波长依赖性进行了理论和实验研究,这有助于深入了解纠缠如何影响分子光谱。我们证明,ETPA激发光谱可能不同于经典双光子吸收(TPA)的激发光谱,也不同于频率加倍的光子的单光子共振吸收(OPA)的激发光谱。通过假设ETPA截面由双光子激发态辐射线宽而非电子 - 声子相互作用决定,对这些结果进行了建模,这导致激发光谱与观测结果相匹配。此外,我们发现具有最高TPA和ETPA强度的双光子允许态具有高电子纠缠,ETPA尤其有利于具有最长辐射寿命的态。这些结果为基于量子光的光谱学和显微镜技术的发展提供了概念,这将导致ETPA传感器和低强度检测方案的效率大大提高。
Proc Natl Acad Sci U S A. 2023-8-29
Acc Chem Res. 2022-4-5
J Am Chem Soc. 2020-6-2
J Phys Chem Lett. 2017-1-19
J Phys Chem Lett. 2024-9-19
Acc Chem Res. 2018-9-18
J Am Chem Soc. 2018-10-29
J Phys Chem B. 2006-12-28
J Am Chem Soc. 2021-10-20
Proc Natl Acad Sci U S A. 2024-11-5
Phys Rev Lett. 2022-10-28
J Phys Chem Lett. 2022-11-3
J Phys Chem Lett. 2022-3-31
Acc Chem Res. 2022-4-5
J Phys Chem Lett. 2022-2-17
J Am Chem Soc. 2021-10-20
J Chem Phys. 2021-8-28