文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用量子光对细胞和组织进行微观生物力学成像。

Harnessing quantum light for microscopic biomechanical imaging of cells and tissues.

机构信息

Department of Chemistry and Physics, The University of Tennessee, Chattanooga, TN 37403.

The University of Tennessee Research Institute, The University of Tennessee, Chattanooga, TN 37403.

出版信息

Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2413938121. doi: 10.1073/pnas.2413938121. Epub 2024 Oct 31.


DOI:10.1073/pnas.2413938121
PMID:39480851
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11551316/
Abstract

The biomechanical properties of cells and tissues play an important role in our fundamental understanding of the structures and functions of biological systems at both the cellular and subcellular levels. Recently, Brillouin microscopy, which offers a label-free spectroscopic means of assessing viscoelastic properties in vivo, has emerged as a powerful way to interrogate those properties on a microscopic level in living tissues. However, susceptibility to photodamage and photobleaching, particularly when high-intensity laser beams are used to induce Brillouin scattering, poses a significant challenge. This article introduces a transformative approach designed to mitigate photodamage in biological and biomedical studies, enabling nondestructive, label-free assessments of mechanical properties in live biological samples. By leveraging quantum-light-enhanced stimulated Brillouin scattering (SBS) imaging contrast, the signal-to-noise ratio is significantly elevated, thereby increasing sample viability and extending interrogation times without compromising the integrity of living samples. The tangible impact of this methodology is evidenced by a notable three-fold increase in sample viability observed after subjecting the samples to three hours of continuous squeezed-light illumination, surpassing the traditional coherent light-based approaches. The quantum-enhanced SBS imaging holds promise across diverse fields, such as cancer biology and neuroscience where preserving sample vitality is of paramount significance. By mitigating concerns regarding photodamage and photobleaching associated with high-intensity lasers, this technological breakthrough expands our horizons for exploring the mechanical properties of live biological systems, paving the way for an era of research and clinical applications.

摘要

细胞和组织的生物力学特性在我们对细胞和亚细胞水平的生物系统结构和功能的基本理解中起着重要作用。最近,布里渊显微镜作为一种在体内评估粘弹性特性的无标记光谱手段,已经成为一种在活组织中在微观水平上检测这些特性的强大方法。然而,光损伤和光漂白的敏感性,特别是当高强度激光束用于诱导布里渊散射时,是一个重大挑战。本文介绍了一种变革性的方法,旨在减轻生物和生物医学研究中的光损伤,实现对活生物样本机械性能的非破坏性、无标记评估。通过利用量子光增强的受激布里渊散射(SBS)成像对比度,显著提高了信号与噪声比,从而在不损害活样本完整性的情况下,提高了样品的存活率并延长了询问时间。该方法的实际影响体现在,经过三个小时的连续压缩光照射后,样品的存活率显著提高了三倍,超过了传统的相干光方法。量子增强的 SBS 成像在癌症生物学和神经科学等多个领域具有广阔的应用前景,在这些领域中,保持样本活力至关重要。通过减轻高强度激光相关的光损伤和光漂白的担忧,这项技术突破拓展了我们探索活生物系统机械特性的视野,为研究和临床应用开辟了一个新时代。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/9a5af8036a28/pnas.2413938121fig07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/93944713065f/pnas.2413938121fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/0f87fd914656/pnas.2413938121fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/0f7db458826f/pnas.2413938121fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/3ee2a58fa70e/pnas.2413938121fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/89a9cdca267e/pnas.2413938121fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/1a51ad93e54d/pnas.2413938121fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/9a5af8036a28/pnas.2413938121fig07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/93944713065f/pnas.2413938121fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/0f87fd914656/pnas.2413938121fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/0f7db458826f/pnas.2413938121fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/3ee2a58fa70e/pnas.2413938121fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/89a9cdca267e/pnas.2413938121fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/1a51ad93e54d/pnas.2413938121fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a17/11551316/9a5af8036a28/pnas.2413938121fig07.jpg

相似文献

[1]
Harnessing quantum light for microscopic biomechanical imaging of cells and tissues.

Proc Natl Acad Sci U S A. 2024-11-5

[2]
Harnessing quantum light for microscopic biomechanical imaging of cells and tissues.

ArXiv. 2024-8-21

[3]
Quantum-enhanced stimulated Brillouin scattering spectroscopy and imaging.

Optica. 2022-8-20

[4]
Pulsed stimulated Brillouin microscopy enables high-sensitivity mechanical imaging of live and fragile biological specimens.

Nat Methods. 2023-12

[5]
Current state of stimulated Brillouin scattering microscopy for the life sciences.

JPhys Photonics. 2024-7-1

[6]
Non-contact and label-free biomechanical imaging: Stimulated Brillouin microscopy and beyond.

Front Phys. 2023

[7]
Impact of polarization pulling on optimal spectrometer design for stimulated Brillouin scattering microscopy.

APL Photonics. 2024-10-1

[8]
Brillouin microscopy monitors rapid responses in subcellular compartments.

Photonix. 2024

[9]
Quantum-enhanced nonlinear microscopy.

Nature. 2021-6

[10]
Birefringence-induced phase delay enables Brillouin mechanical imaging in turbid media.

Nat Commun. 2024-6-19

本文引用的文献

[1]
Single-mode squeezed-light generation and tomography with an integrated optical parametric oscillator.

Sci Adv. 2024-3-15

[2]
Pulsed stimulated Brillouin microscopy enables high-sensitivity mechanical imaging of live and fragile biological specimens.

Nat Methods. 2023-12

[3]
Colors of entangled two-photon absorption.

Proc Natl Acad Sci U S A. 2023-8-29

[4]
Quantum-enhanced stimulated Brillouin scattering spectroscopy and imaging.

Optica. 2022-8-20

[5]
Non-contact and label-free biomechanical imaging: Stimulated Brillouin microscopy and beyond.

Front Phys. 2023

[6]
Quantum Light-Enhanced Two-Photon Imaging of Breast Cancer Cells.

J Phys Chem Lett. 2022-3-31

[7]
Enhancing Entangled Two-Photon Absorption for Picosecond Quantum Spectroscopy.

J Am Chem Soc. 2021-10-20

[8]
Multidimensional four-wave mixing signals detected by quantum squeezed light.

Proc Natl Acad Sci U S A. 2021-8-17

[9]
Quantum-enhanced nonlinear microscopy.

Nature. 2021-6

[10]
Quantum-enhanced two-photon spectroscopy using two-mode squeezed light.

Opt Lett. 2021-4-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索