Suppr超能文献

通过整合双向长短期记忆、卷积神经网络和自注意力机制来提高 DNA 6mA 位点预测。

Improving DNA 6mA Site Prediction via Integrating Bidirectional Long Short-Term Memory, Convolutional Neural Network, and Self-Attention Mechanism.

机构信息

College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China.

School of Information and Electrical Engineering, Hangzhou City University, Hangzhou City University, Hangzhou 310015, China.

出版信息

J Chem Inf Model. 2023 Sep 11;63(17):5689-5700. doi: 10.1021/acs.jcim.3c00698. Epub 2023 Aug 21.

Abstract

Identifying DNA N6-methyladenine (6mA) sites is significantly important to understanding the function of DNA. Many deep learning-based methods have been developed to improve the performance of 6mA site prediction. In this study, to further improve the performance of 6mA site prediction, we propose a new meta method, called Co6mA, to integrate bidirectional long short-term memory (BiLSTM), convolutional neural networks (CNNs), and self-attention mechanisms (SAM) via assembling two different deep learning-based models. The first model developed in this study is called CBi6mA, which is composed of CNN, BiLSTM, and fully connected modules. The second model is borrowed from LA6mA, which is an existing 6mA prediction method based on BiLSTM and SAM modules. Experimental results on two independent testing sets of different model organisms, i.e., and , demonstrate that Co6mA can achieve an average accuracy of 91.8%, covering 89% of all 6mA samples while achieving an average Matthews correlation coefficient value (0.839), which is higher than the second-best method DeepM6A.

摘要

鉴定 DNA N6-甲基腺嘌呤(6mA)位点对于理解 DNA 的功能非常重要。已经开发了许多基于深度学习的方法来提高 6mA 位点预测的性能。在这项研究中,为了进一步提高 6mA 位点预测的性能,我们提出了一种新的元方法,称为 Co6mA,通过组装两个不同的基于深度学习的模型来整合双向长短期记忆(BiLSTM)、卷积神经网络(CNNs)和自注意力机制(SAM)。我们在这项研究中开发的第一个模型称为 CBi6mA,它由 CNN、BiLSTM 和全连接模块组成。第二个模型是从 LA6mA 借用的,LA6mA 是一种现有的基于 BiLSTM 和 SAM 模块的 6mA 预测方法。在两个不同模型生物的两个独立测试集上的实验结果表明,Co6mA 可以达到平均准确率 91.8%,覆盖了所有 6mA 样本的 89%,同时实现了平均马修斯相关系数值(0.839),高于排名第二的 DeepM6A 方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验