Suppr超能文献

基于网络的 DNA N6-甲基腺嘌呤位点预测工具的批判性评估。

Critical evaluation of web-based DNA N6-methyladenine site prediction tools.

机构信息

Kyushu Institute of Technology, Japan.

Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University.

出版信息

Brief Funct Genomics. 2021 Jul 17;20(4):258-272. doi: 10.1093/bfgp/elaa028.

Abstract

Methylation of DNA N6-methyladenosine (6mA) is a type of epigenetic modification that plays pivotal roles in various biological processes. The accurate genome-wide identification of 6mA is a challenging task that leads to understanding the biological functions. For the last 5 years, a number of bioinformatics approaches and tools for 6mA site prediction have been established, and some of them are easily accessible as web application. Nevertheless, the accurate genome-wide identification of 6mA is still one of the challenging works that lead to understanding the biological functions. Especially in practical applications, these tools have implemented diverse encoding schemes, machine learning algorithms and feature selection methods, whereas few systematic performance comparisons of 6mA site predictors have been reported. In this review, 11 publicly available 6mA predictors evaluated with seven different species-specific datasets (Arabidopsis thaliana, Tolypocladium, Diospyros lotus, Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans and Escherichia coli). Of those, few species are close homologs, and the remaining datasets are distant sequences. Our independent, validation tests demonstrated that Meta-i6mA and MM-6mAPred models for A. thaliana, Tolypocladium, S. cerevisiae and D. melanogaster achieved excellent overall performance when compared with their counterparts. However, none of the existing methods were suitable for E. coli, C. elegans and D. lotus. A feasibility of the existing predictors is also discussed for the seven species. Our evaluation provides useful guidelines for the development of 6mA site predictors and helps biologists selecting suitable prediction tools.

摘要

DNA N6-甲基腺嘌呤(6mA)的甲基化是一种表观遗传修饰,在各种生物过程中起着关键作用。准确地全基因组识别 6mA 是一项具有挑战性的任务,有助于理解其生物学功能。在过去的 5 年中,已经建立了许多用于 6mA 位点预测的生物信息学方法和工具,其中一些作为网络应用程序很容易获得。然而,准确地全基因组识别 6mA 仍然是理解其生物学功能的具有挑战性的工作之一。特别是在实际应用中,这些工具实现了多样化的编码方案、机器学习算法和特征选择方法,而关于 6mA 位点预测器的系统性能比较报告却很少。在本综述中,我们评估了 11 个公开的 6mA 预测器,它们使用了 7 个不同物种特异性数据集(拟南芥、卷枝毛霉、莲、酿酒酵母、黑腹果蝇、秀丽隐杆线虫和大肠杆菌)。其中,少数物种是密切同源的,其余数据集是远缘序列。我们的独立验证测试表明,Meta-i6mA 和 MM-6mAPred 模型在拟南芥、卷枝毛霉、酿酒酵母和黑腹果蝇中的整体性能表现出色。然而,现有的方法都不适合大肠杆菌、秀丽隐杆线虫和莲。我们还讨论了现有的预测器在 7 个物种中的可行性。我们的评估为 6mA 位点预测器的开发提供了有用的指导,并帮助生物学家选择合适的预测工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验