Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA.
Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA.
J Lipid Res. 2023 Sep;64(9):100429. doi: 10.1016/j.jlr.2023.100429. Epub 2023 Aug 19.
Serum amyloid A (SAA) is named after a life-threatening disease, yet this small evolutionarily conserved protein must have played a vital role in host defense. Most circulating SAA binds plasma lipoproteins and modulates their metabolism. However, this hardly justifies the rapid and dramatic SAA upregulation in inflammation, which is concomitant with upregulation of secretory phospholipase A (sPLA). We proposed that these proteins synergistically clear cell membrane debris from the sites of injury. The present study uses biochemical and biophysical approaches to further explore the beneficial function of SAA and its potential links to amyloid formation. We show that murine and human SAA1 are powerful detergents that solubilize diverse lipids, including mammalian biomembranes, converting them into lipoprotein-size nanoparticles. These nanoparticles provide ligands for cell receptors, such as scavenger receptor CD36 or heparin/heparan sulfate, act as substrates of sPLA, and sequester toxic products of sPLA Together, these functions enable SAA to rapidly clear unprotected lipids. SAA can also adsorb, without remodeling, to lipoprotein-size nanoparticles such as exosomal liposomes, which are proxies for lipoproteins. SAA in complexes with zwitterionic phospholipids stabilizes α-helices, while SAA in complexes containing anionic lipids or micelle-forming sPLA products forms metastable β-sheet-rich species that readily aggregate to form amyloid. Consequently, the synergy between SAA and sPLA extends from the beneficial lipid clearance to the pathologic amyloid formation. Furthermore, we show that lipid composition alters SAA conformation and thereby can influence the metabolic fate of SAA-lipid complexes, including their proamyloidogenic and proatherogenic binding to heparan sulfate.
血清淀粉样蛋白 A(SAA)得名于一种危及生命的疾病,但这种在进化上保守的小蛋白在宿主防御中肯定发挥了至关重要的作用。大多数循环 SAA 与血浆脂蛋白结合并调节其代谢。然而,这很难解释炎症中 SAA 的快速和显著上调,这种上调与分泌型磷脂酶 A(sPLA)的上调同时发生。我们提出这些蛋白质协同作用从损伤部位清除细胞膜碎片。本研究使用生化和生物物理方法进一步探索 SAA 的有益功能及其与淀粉样形成的潜在联系。我们表明,鼠和人 SAA1 是强大的清洁剂,可溶解多种脂质,包括哺乳动物生物膜,将其转化为脂蛋白大小的纳米颗粒。这些纳米颗粒为细胞受体(如清道夫受体 CD36 或肝素/硫酸乙酰肝素)提供配体,作为 sPLA 的底物,并隔离 sPLA 的有毒产物。这些功能使 SAA 能够快速清除无保护的脂质。SAA 还可以在不重塑的情况下吸附到脂蛋白大小的纳米颗粒上,如外体脂质体,这些颗粒是脂蛋白的代表。SAA 与两性离子磷脂形成复合物可稳定α-螺旋,而 SAA 与阴离子脂质或形成胶束的 sPLA 产物形成复合物则形成不稳定的富含β-折叠的物质,易于聚集形成淀粉样物质。因此,SAA 和 sPLA 的协同作用从有益的脂质清除扩展到病理淀粉样形成。此外,我们表明脂质组成改变了 SAA 的构象,从而可以影响 SAA-脂质复合物的代谢命运,包括它们与肝素硫酸乙酰肝素的原淀粉样形成和前动脉粥样硬化结合。