Suppr超能文献

根据原发性前房角关闭且易患青光眼性视神经病变患者的个体化特征量身定制的机器学习处理算法。

Machine learning-couched treatment algorithms tailored to individualized profile of patients with primary anterior chamber angle closure predisposed to the glaucomatous optic neuropathy.

作者信息

Kurysheva Natalia I, Rodionova Oxana Y, Pomerantsev Alexey L, Sharova Galina A, Golubnitschaja Olga

机构信息

The Ophthalmological Center of the Federal Medical and Biological Agency of the Russian Federation, 15 Gamalei Street, Moscow, Russian Federation 123098.

Federal Research Center for Chemical Physics RAS, 4, Kosygin Street, Moscow, Russian Federation 119991.

出版信息

EPMA J. 2023 Aug 17;14(3):527-538. doi: 10.1007/s13167-023-00337-1. eCollection 2023 Sep.

Abstract

BACKGROUND

Primary angle closure glaucoma (PACG) is still one of the leading causes of irreversible blindness, with a trend towards an increase in the number of patients to 32.04 million by 2040, an increase of 58.4% compared with 2013. Health risk assessment based on multi-level diagnostics and machine learning-couched treatment algorithms tailored to individualized profile of patients with primary anterior chamber angle closure are considered essential tools to reverse the trend and protect vulnerable subpopulations against health-to-disease progression.

AIM

To develop a methodology for personalized choice of an effective method of primary angle closure (PAC) treatment based on comparing the prognosis of intraocular pressure (IOP) changes due to laser peripheral iridotomy (LPI) or lens extraction (LE).

METHODS

The multi-parametric data analysis was used to develop models predicting individual outcomes of the primary angle closure (PAC) treatment with LPI and LE. For doing this, we suggested a positive dynamics in the intraocular pressure (IOP) after treatment, as the objective measure of a successful treatment. Thirty-seven anatomical parameters have been considered by applying artificial intelligence to the prospective study on 30 (LE) + 30 (LPI) patients with PAC.

RESULTS AND DATA INTERPRETATION IN THE FRAMEWORK OF 3P MEDICINE: Based on the anatomical and topographic features of the patients with PAC, mathematical models have been developed that provide a personalized choice of LE or LPI in the treatment. Multi-level diagnostics is the key tool in the overall advanced approach. To this end, for the future application of AI in the area, it is strongly recommended to consider the following:Clinically relevant phenotyping applicable to advanced population screeningSystemic effects causing suboptimal health conditions considered in order to cost-effectively protect affected individuals against health-to-disease transitionClinically relevant health risk assessment utilizing health/disease-specific molecular patterns detectable in body fluids with high predictive power such as a comprehensive tear fluid analysis.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13167-023-00337-1.

摘要

背景

原发性闭角型青光眼(PACG)仍是不可逆性失明的主要原因之一,预计到2040年患者数量将增至3204万,较2013年增长58.4%。基于多级诊断和针对原发性前房角关闭患者个体特征定制的机器学习治疗算法进行健康风险评估,被认为是扭转这一趋势、保护易感亚人群避免健康向疾病进展的重要工具。

目的

基于比较激光周边虹膜切开术(LPI)或晶状体摘除术(LE)引起的眼压(IOP)变化预后,开发一种个性化选择原发性闭角(PAC)有效治疗方法的方法。

方法

采用多参数数据分析来开发预测LPI和LE治疗原发性闭角(PAC)个体结果的模型。为此,我们将治疗后眼压(IOP)的正向变化作为成功治疗的客观指标。通过对3(LE)+30(LPI)例PAC患者的前瞻性研究应用人工智能,考虑了37个解剖参数。

3P医学框架下的结果与数据解读:基于PAC患者的解剖和地形特征,开发了数学模型,为治疗中LE或LPI的个性化选择提供依据。多级诊断是整体先进方法中的关键工具。为此,为了未来人工智能在该领域的应用,强烈建议考虑以下几点:适用于高级人群筛查的临床相关表型分析;考虑导致健康状况欠佳的全身效应,以便经济高效地保护受影响个体避免健康向疾病转变;利用在体液中可检测到的具有高预测力的健康/疾病特异性分子模式进行临床相关健康风险评估,如全面的泪液分析。

补充信息

在线版本包含可在10.1007/s13167-023-00337-1获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d61f/10439872/715021b36864/13167_2023_337_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验