Department of Radiology, Shandong Provincial Hospital, Shandong University, Jing-wu Road No. 324, Jinan, Shandong, 250021, China.
Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, 400715, China.
Mol Neurobiol. 2024 Jan;61(1):326-339. doi: 10.1007/s12035-023-03597-0. Epub 2023 Aug 22.
To reveal the network-level structural disruptions associated with cognitive dysfunctions in different cerebral small vessel disease (CSVD) burdens, we used probabilistic diffusion tractography and graph theory to investigate the brain network topology in 67 patients with a severe CSVD burden (CSVD-s), 133 patients with a mild CSVD burden (CSVD-m) and 89 healthy controls. We used one-way analysis of covariance to assess the altered topological measures between groups, and then evaluated their Pearson correlation with cognitive parameters. Both the CSVD and control groups showed efficient small-world organization in white matter (WM) networks. However, compared with CSVD-m patients and controls, CSVD-s patients exhibited significantly decreased local efficiency, with partially reorganized hub distributions. For regional topology, CSVD-s patients showed significantly decreased nodal efficiency in the bilateral anterior cingulate gyrus, caudate nucleus, right opercular inferior frontal gyrus (IFGoperc), supplementary motor area (SMA), insula and left orbital superior frontal gyrus and angular gyrus. Intriguingly, global/local efficiency and nodal efficiency of the bilateral caudate nucleus, right IFGoperc, SMA and left angular gyrus showed significant correlations with cognitive parameters in the CSVD-s group, while only the left pallidum showed significant correlations with cognitive metrics in the CSVD-m group. In conclusion, the decreased local specialization of brain structural networks in patients with different CSVD burdens provides novel insights into understanding the brain structural alterations in relation to CSVD severity. Cognitive correlations with brain structural network efficiency suggest their potential use as neuroimaging biomarkers to assess the severity of CSVD.
为了揭示与不同脑小血管病(CSVD)负担相关的认知功能障碍的网络水平结构破坏,我们使用概率弥散张量成像和图论方法研究了 67 名严重 CSVD 负担(CSVD-s)患者、133 名轻度 CSVD 负担(CSVD-m)患者和 89 名健康对照者的大脑网络拓扑结构。我们使用单向方差分析来评估组间改变的拓扑指标,然后评估它们与认知参数的 Pearson 相关性。CSVD 和对照组的白质(WM)网络均表现出有效的小世界组织。然而,与 CSVD-m 患者和对照组相比,CSVD-s 患者的局部效率明显降低,且枢纽分布部分重新组织。对于区域拓扑,CSVD-s 患者双侧前扣带回、尾状核、右侧脑岛下回额下回(IFGoperc)、运动前区(SMA)、岛叶和左侧额上回和角回的节点效率明显降低。有趣的是,CSVD-s 组双侧尾状核、右侧 IFGoperc、SMA 和左侧角回的全局/局部效率和节点效率与认知参数显著相关,而 CSVD-m 组仅左侧苍白球与认知指标显著相关。总之,不同 CSVD 负担患者脑结构网络局部专业化程度的降低为理解 CSVD 严重程度与脑结构改变的关系提供了新的见解。与脑结构网络效率的认知相关性表明,它们可能作为神经影像学生物标志物用于评估 CSVD 的严重程度。