Suppr超能文献

离线深度强化学习和离策略评估在 1 型糖尿病个体化基础胰岛素控制中的应用。

Offline Deep Reinforcement Learning and Off-Policy Evaluation for Personalized Basal Insulin Control in Type 1 Diabetes.

出版信息

IEEE J Biomed Health Inform. 2023 Oct;27(10):5087-5098. doi: 10.1109/JBHI.2023.3303367. Epub 2023 Oct 5.

Abstract

Recent advancements in hybrid closed-loop systems, also known as the artificial pancreas (AP), have been shown to optimize glucose control and reduce the self-management burdens for people living with type 1 diabetes (T1D). AP systems can adjust the basal infusion rates of insulin pumps, facilitated by real-time communication with continuous glucose monitoring. Deep reinforcement learning (DRL) has introduced new paradigms of basal insulin control algorithms. However, all the existing DRL-based AP controllers require extensive random online interactions between the agent and environment. While this can be validated in T1D simulators, it becomes impractical in real-world clinical settings. To this end, we propose an offline DRL framework that can develop and validate models for basal insulin control entirely offline. It comprises a DRL model based on the twin delayed deep deterministic policy gradient and behavior cloning, as well as off-policy evaluation (OPE) using fitted Q evaluation. We evaluated the proposed framework on an in silico dataset generated by the UVA/Padova T1D simulator, and the OhioT1DM dataset, a real clinical dataset. The performance on the in silico dataset shows that the offline DRL algorithm significantly increased time in range while reducing time below range and time above range for both adult and adolescent groups. Then, we used the OPE to estimate model performance on the clinical dataset, where a notable increase in policy values was observed for each subject. The results demonstrate that the proposed framework is a viable and safe method for improving personalized basal insulin control in T1D.

摘要

近年来,混合闭环系统(也称为人工胰腺)取得了显著进展,这有助于优化糖尿病患者的血糖控制,并减轻他们的自我管理负担。AP 系统可以通过与实时连续血糖监测进行交互,调整胰岛素泵的基础输注率。深度强化学习(DRL)为基础胰岛素控制算法引入了新的范例。然而,所有现有的基于 DRL 的 AP 控制器都需要在代理和环境之间进行广泛的随机在线交互。虽然这可以在 T1D 模拟器中进行验证,但在现实的临床环境中并不实用。为此,我们提出了一种离线 DRL 框架,该框架可以完全离线开发和验证基础胰岛素控制模型。它由一个基于双延迟深度确定性策略梯度和行为克隆的 DRL 模型以及使用拟合 Q 值评估的离线策略评估(OPE)组成。我们在由 UVA/Padova T1D 模拟器生成的仿真数据集和真实临床数据集 OhioT1DM 上评估了所提出的框架。仿真数据集上的性能表明,离线 DRL 算法显著增加了成人和青少年组的时间在范围内的时间,同时减少了时间在范围内的时间和时间在范围外的时间。然后,我们使用 OPE 来估计临床数据集上的模型性能,每个受试者的策略值都有显著提高。结果表明,所提出的框架是一种可行且安全的方法,可以改善 T1D 中的个性化基础胰岛素控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验