Herrero Pau, Bondia Jorge, Adewuyi Oloruntoba, Pesl Peter, El-Sharkawy Mohamed, Reddy Monika, Toumazou Chris, Oliver Nick, Georgiou Pantelis
Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom.
Institut Universitari d'Automàtica i Informàtica Industrial, Universitat Politècnica de València, València, Spain.
Comput Methods Programs Biomed. 2017 Jul;146:125-131. doi: 10.1016/j.cmpb.2017.05.010. Epub 2017 Jun 1.
Current prototypes of closed-loop systems for glucose control in type 1 diabetes mellitus, also referred to as artificial pancreas systems, require a pre-meal insulin bolus to compensate for delays in subcutaneous insulin absorption in order to avoid initial post-prandial hyperglycemia. Computing such a meal bolus is a challenging task due to the high intra-subject variability of insulin requirements. Most closed-loop systems compute this pre-meal insulin dose by a standard bolus calculation, as is commonly found in insulin pumps. However, the performance of these calculators is limited due to a lack of adaptiveness in front of dynamic changes in insulin requirements. Despite some initial attempts to include adaptation within these calculators, challenges remain.
In this paper we present a new technique to automatically adapt the meal-priming bolus within an artificial pancreas. The technique consists of using a novel adaptive bolus calculator based on Case-Based Reasoning and Run-To-Run control, within a closed-loop controller. Coordination between the adaptive bolus calculator and the controller was required to achieve the desired performance. For testing purposes, the clinically validated Imperial College Artificial Pancreas controller was employed. The proposed system was evaluated against itself but without bolus adaptation. The UVa-Padova T1DM v3.2 system was used to carry out a three-month in silico study on 11 adult and 11 adolescent virtual subjects taking into account inter-and intra-subject variability of insulin requirements and uncertainty on carbohydrate intake.
Overall, the closed-loop controller enhanced by an adaptive bolus calculator improves glycemic control when compared to its non-adaptive counterpart. In particular, the following statistically significant improvements were found (non-adaptive vs. adaptive). Adults: mean glucose 142.2 ± 9.4vs. 131.8 ± 4.2mg/dl; percentage time in target [70, 180]mg/dl, 82.0 ± 7.0vs. 89.5 ± 4.2; percentage time above target 17.7 ± 7.0vs. 10.2 ± 4.1. Adolescents: mean glucose 158.2 ± 21.4vs. 140.5 ± 13.0mg/dl; percentage time in target, 65.9 ± 12.9vs. 77.5 ± 12.2; percentage time above target, 31.7 ± 13.1vs. 19.8 ± 10.2. Note that no increase in percentage time in hypoglycemia was observed.
Using an adaptive meal bolus calculator within a closed-loop control system has the potential to improve glycemic control in type 1 diabetes when compared to its non-adaptive counterpart.
1型糖尿病血糖控制闭环系统的当前原型,也被称为人工胰腺系统,需要餐前胰岛素大剂量注射以补偿皮下胰岛素吸收的延迟,从而避免餐后初期高血糖。由于胰岛素需求的个体内高度变异性,计算这样一顿饭的胰岛素大剂量是一项具有挑战性的任务。大多数闭环系统通过标准大剂量计算来计算这顿饭前的胰岛素剂量,这在胰岛素泵中很常见。然而,由于在胰岛素需求动态变化面前缺乏适应性,这些计算器的性能受到限制。尽管最初有一些尝试在这些计算器中纳入适应性,但挑战依然存在。
在本文中,我们提出了一种新技术,用于在人工胰腺中自动调整餐前启动胰岛素大剂量。该技术包括在闭环控制器中使用基于案例推理和逐次运行控制的新型自适应大剂量计算器。自适应大剂量计算器与控制器之间需要协调以实现所需性能。为了测试目的,采用了经过临床验证的帝国理工学院人工胰腺控制器。所提出的系统与自身进行比较,但不进行大剂量调整。使用UVa-Padova T1DM v3.2系统对11名成人和11名青少年虚拟受试者进行了为期三个月的计算机模拟研究,考虑了胰岛素需求的个体间和个体内变异性以及碳水化合物摄入量的不确定性。
总体而言,与非自适应对应系统相比,由自适应大剂量计算器增强的闭环控制器改善了血糖控制。具体而言,发现了以下具有统计学意义的改善(非自适应与自适应)。成人:平均血糖142.2±9.4与131.8±4.2mg/dl;血糖在目标范围[70, 180]mg/dl内的时间百分比,82.0±7.0与89.5±4.2;高于目标范围的时间百分比,17.7±7.0与10.2±4.1。青少年:平均血糖158.2±21.4与140.5±13.0mg/dl;血糖在目标范围内的时间百分比,65.9±12.9与77.5±12.2;高于目标范围的时间百分比,31.7±13.1与19.8±10.2。注意,未观察到低血糖时间百分比增加。
与非自适应对应系统相比,在闭环控制系统中使用自适应餐前胰岛素大剂量计算器有可能改善1型糖尿病的血糖控制。