Global Center for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
Interfaces, Confinement, Matériaux et Nanostructures ICMN-UMR 7374, CNRS-Université d'Orléans, 1 Rue de la Férollerie, Orléans 45100, France.
Inorg Chem. 2023 Sep 4;62(35):14243-14251. doi: 10.1021/acs.inorgchem.3c01502. Epub 2023 Aug 23.
The emergence of multidrug-resistant microbial pathogens poses a significant threat, severely limiting the options for effective antibiotic therapy. This challenge can be overcome through the photoinactivation of pathogenic bacteria using materials generating reactive oxygen species upon exposure to visible light. These species target vital components of living cells, significantly reducing the likelihood of resistance development by the targeted pathogens. In our research, we have developed a nanocomposite material consisting of an aqueous colloidal suspension of graphene oxide sheets adorned with nanoaggregates of octahedral molybdenum cluster complexes. The negative charge of the graphene oxide and the positive charge of the nanoaggregates promoted their electrostatic interaction in aqueous medium and close cohesion between the colloids. Upon illumination with blue light, the colloidal system exerted a potent antibacterial effect against planktonic cultures of largely surpassing the individual contributions of the components. The underlying mechanism behind this phenomenon lies in the photoinduced electron transfer from the nanoaggregates of the cluster complexes to the graphene oxide sheets, which triggers the generation of reactive oxygen species. Thus, leveraging the unique properties of graphene oxide and light-harvesting octahedral molybdenum cluster complexes can open more effective and resilient antibacterial strategies.
多药耐药微生物病原体的出现构成了重大威胁,严重限制了有效抗生素治疗的选择。通过使用在暴露于可见光时产生活性氧物质的材料对致病菌进行光灭活,可以克服这一挑战。这些物质靶向活细胞的重要组成部分,显著降低了目标病原体产生耐药性的可能性。在我们的研究中,我们开发了一种纳米复合材料,由氧化石墨烯片的水性胶体悬浮液组成,表面装饰有八面体钼簇配合物的纳米聚集体。氧化石墨烯的负电荷和纳米聚集体的正电荷促进了它们在水介质中的静电相互作用和胶体之间的紧密结合。用蓝光照射时,胶体系统对浮游培养物表现出强大的抗菌作用,其效果大大超过了各个成分的单独贡献。这种现象背后的机制在于从簇配合物的纳米聚集体到氧化石墨烯片的光诱导电子转移,这触发了活性氧物质的产生。因此,利用氧化石墨烯和光收集八面体钼簇配合物的独特性质可以开辟更有效和更有弹性的抗菌策略。