Strecker Karl, Otto Matthew, Nagai Masaya, O'Hara John F, Mendis Rajind
School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, 74078, USA.
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.
Sci Rep. 2023 Aug 23;13(1):13793. doi: 10.1038/s41598-023-41046-z.
We design and fabricate an artificial dielectric prism that can steer a terahertz beam in space and experimentally investigate its behavior. The artificial dielectric medium consists of a uniformly spaced stack of metal plates, electromagnetically equivalent to an array of parallel-plate waveguides operating in tandem. At an operating frequency of 0.3 THz, we observe a maximum beam deflection of 29°, limited by the precision of the available spacers. Spring-loading the spacers between the plates allow us to scan the beam continuously and dynamically over a range of 5°. The measured beam intensity maps at the input and output of the device reveal very good Gaussian beam quality and an estimated power efficiency of 71%. As a possible real-world application, we integrate the prism into the path of a free-space terahertz communication link and demonstrate unimpaired performance.
我们设计并制造了一种能够在空间中操控太赫兹光束的人工介质棱镜,并对其行为进行了实验研究。该人工介质由均匀间隔堆叠的金属板组成,在电磁上等效于串联运行的平行板波导阵列。在0.3太赫兹的工作频率下,我们观察到最大光束偏转为29°,这受到可用间隔物精度的限制。对板间间隔物进行弹簧加载使我们能够在5°的范围内连续动态地扫描光束。在该装置的输入和输出处测得的光束强度分布图显示出非常好的高斯光束质量,估计功率效率为71%。作为一种可能的实际应用,我们将棱镜集成到自由空间太赫兹通信链路的路径中,并证明了其性能不受影响。