Suppr超能文献

利用机器学习技术在具有基线特征的原发性醛固酮增多症患者中识别5种突变

Identifying 5 Mutation in Aldosterone-Producing Adenoma Patients With Baseline Characteristics Using Machine Learning Technology.

作者信息

Chen Li-Chin, Huang Wei-Chieh, Peng Kang-Yung, Chen Ying-Ying, Li Szu-Chang, Syed Mohammed Nazri Siti Khadijah, Lin Yen-Hung, Lin Liang-Yu, Lu Tse-Min, Kim Jung Hee, Azizan Elena Aisha, Hu Jinbo, Li Qifu, Chueh Jeff S, Wu Vin-Cent

机构信息

Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan.

Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.

出版信息

JACC Asia. 2023 Jun 13;3(4):664-675. doi: 10.1016/j.jacasi.2023.03.010. eCollection 2023 Aug.

Abstract

BACKGROUND

Primary aldosteronism is characterized by inappropriate aldosterone production, and unilateral aldosterone-producing adenoma (uPA) is a common type of PA. 5 mutation is a protective factor in uPA; however, there is no preoperative approach to detect 5 mutation in patients with uPA.

OBJECTIVES

This study aimed to provide a personalized surgical recommendation that enables more confidence in advising patients to pursue surgical treatment.

METHODS

We enrolled 328 patients with uPA harboring 5 mutations (n = 158) or not (n = 170) who had undergone adrenalectomy. Eighty-seven features were collected, including demographics, various blood and urine test results, and clinical comorbidities. We designed 2 versions of the prediction model: one for institutes with complete blood tests (full version), and the other for institutes that may not be equipped with comprehensive testing facilities (condensed version).

RESULTS

The results show that in the full version, the Light Gradient Boosting Machine outperformed other classifiers, achieving area under the curve and accuracy values of 0.905 and 0.864, respectively. The Light Gradient Boosting Machine also showed excellent performance in the condensed version, achieving area under the curve and accuracy values of 0.867 and 0.803, respectively.

CONCLUSIONS

We simplified the preoperative diagnosis of 5 mutations successfully using machine learning. The proposed lightweight tool that requires only baseline characteristics and blood/urine test results can be widely applied and can aid personalized prediction during preoperative counseling for patients with uPA.

摘要

背景

原发性醛固酮增多症的特征是醛固酮分泌异常,单侧醛固酮分泌腺瘤(uPA)是原发性醛固酮增多症的常见类型。5突变是uPA的一个保护因素;然而,目前尚无术前方法可检测uPA患者的5突变。

目的

本研究旨在提供个性化的手术建议,以便在建议患者进行手术治疗时更有信心。

方法

我们纳入了328例接受肾上腺切除术的uPA患者,其中158例携带5突变,170例未携带5突变。收集了87项特征,包括人口统计学信息、各种血液和尿液检测结果以及临床合并症。我们设计了2个版本的预测模型:一个用于具备完整血液检测的机构(完整版),另一个用于可能未配备综合检测设施的机构(精简版)。

结果

结果显示,在完整版中,轻梯度提升机的表现优于其他分类器,曲线下面积和准确率分别达到0.905和0.864。轻梯度提升机在精简版中也表现出色,曲线下面积和准确率分别达到0.867和0.803。

结论

我们成功地利用机器学习简化了5突变的术前诊断。所提出的仅需基线特征和血液/尿液检测结果的轻量级工具可广泛应用,并有助于在uPA患者术前咨询期间进行个性化预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ff/10442871/7353f7ebc690/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验