Suppr超能文献

评估和优化用于生态声学恢复监测的多物种叫声识别器的性能。

Evaluating and optimising performance of multi-species call recognisers for ecoacoustic restoration monitoring.

作者信息

Linke Simon, Teixeira Daniella, Turlington Katie

机构信息

CSIRO Environment Dutton Park Queensland Australia.

Australian Rivers Institute Griffith University Nathan Queensland Australia.

出版信息

Ecol Evol. 2023 Aug 22;13(8):e10309. doi: 10.1002/ece3.10309. eCollection 2023 Aug.

Abstract

Monitoring the effect of ecosystem restoration can be difficult and time-consuming. Autonomous sensors, such as acoustic recorders, can aid monitoring across long time scales. This project successfully developed, tested and implemented call recognisers for eight species of frog in the Murray-Darling Basin. Recognisers for all but one species performed well and substantially better than many species recognisers reported in the literature. We achieved this through a comprehensive development phase, which carefully considered and refined the representativeness of training data, as well as the construction (amplitude cut-off) and the similarity thresholds (score cut-offs) of each call template used. Recogniser performance was high for almost all species examined. Recognisers for , , , and all performed well, with most templates having receiver operating characteristics values (the proportion of true positive and true negatives) over 0.7, and some much higher. Recognisers for , and performed particularly well in the training data set, which allowed for responses to environmental watering events, a restoration activity, to be clearly observed. While slightly more involved than building recognisers using commercial packages, the workflows ensure that a high-quality recogniser can be built and the performance fine-tuned using multiple parameters. Using the same framework, recognisers can be improved on in future iterations. We believe that multi-species recognisers are a highly effective and precise way to detect the effects of ecosystem restoration.

摘要

监测生态系统恢复的效果可能既困难又耗时。诸如声学记录仪之类的自主传感器有助于进行长期监测。该项目成功开发、测试并实施了针对墨累-达令盆地八种蛙类的叫声识别器。除一种蛙类外,其他所有识别器的表现都很好,且比文献中报道的许多物种识别器要好得多。我们通过一个全面的开发阶段实现了这一点,该阶段仔细考虑并完善了训练数据的代表性,以及所使用的每个叫声模板的构建(幅度截止)和相似度阈值(分数截止)。几乎所有被检测物种的识别器性能都很高。[此处原文缺失具体物种名称]、[此处原文缺失具体物种名称]、[此处原文缺失具体物种名称]、[此处原文缺失具体物种名称]和[此处原文缺失具体物种名称]的识别器都表现良好,大多数模板的接收器操作特征值(真阳性和真阴性的比例)超过0.7,有些甚至更高。[此处原文缺失具体物种名称]、[此处原文缺失具体物种名称]和[此处原文缺失具体物种名称]的识别器在训练数据集中表现尤为出色,这使得能够清晰观察到对环境补水事件(一种恢复活动)的反应。虽然比使用商业软件包构建识别器稍微复杂一些,但这些工作流程确保可以构建高质量的识别器,并使用多个参数对性能进行微调。使用相同的框架,识别器可以在未来的迭代中得到改进。我们认为,多物种识别器是检测生态系统恢复效果的一种高效且精确的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5355/10443330/f9d7ca7d49eb/ECE3-13-e10309-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验