Manning J T
Acta Biotheor. 1976;25(2-3):111-29. doi: 10.1007/BF00047322.
A model is proposed which implicates molecular recognition systems as the major controlling factors in life cycle expression. It is envisaged that such systems are important in immune functioning and catabolic, metabolic molecule recognition at both inter- and intra-cellular level. These recognition systems have the following characteristics: 1) Specific recognition molecules (recognisers), e.g. vertebrate antibodies, invertebrate agglutinins and plant agglutinins may recognise specific substances, e.g. antigens, catabolic and metabolic molecules. 2) The range of possible recognisable substances is very wide and variable. 3) The recognisers may themselves be recognised by other recognisers. 4) Recognisers are usually produced in large amounts only on presentation of the appropriate recognisable molecule. 5) The progressive introduction of new recognisable molecules increases the recogniser interaction, this interaction causing depression of some recogniser types (immune depression) and facilitation of other types among which may be recognisers specific for self components (e.g. auto-immunity). 6) Low juvenile viability is associated with a restricted range of available recognisers, high adult viability with increasing recogniser range and some auto-immunity/immune depression, senescence with a wide range of available recognisers and extensive auto-immunity/immune depression. Life cycle patterns and their control are discussed. It is suggested control mechanisms may include: 1) Dietary restriction and in some periods complete nutritional abstinence. 2) Specific recogniser depression, genes implicated here are the various antigens (species and polymorphic) found on cell surfaces, in the serum and in various body fluids of vertebrates, e.g. ABO, MNSs, P, Rh, Le and other blood groups, the ABO and Le secretor antigens and the HL-A antigens. In addition the immune response and mixed lymphocyte culture loci are implicated. Finally life cycle control is discussed with relation to sexual selection.
提出了一个模型,该模型认为分子识别系统是生命周期表达中的主要控制因素。据设想,此类系统在免疫功能以及细胞间和细胞内水平的分解代谢、代谢分子识别中都很重要。这些识别系统具有以下特征:1)特异性识别分子(识别器),例如脊椎动物抗体、无脊椎动物凝集素和植物凝集素,可识别特定物质,如抗原、分解代谢和代谢分子。2)可能被识别的物质范围非常广泛且多变。3)识别器本身可能被其他识别器识别。4)识别器通常仅在出现适当的可识别分子时才大量产生。5)新的可识别分子的逐步引入会增加识别器之间的相互作用,这种相互作用会导致某些识别器类型的抑制(免疫抑制),并促进其他类型的识别器,其中可能包括对自身成分具有特异性的识别器(例如自身免疫)。6)幼年活力低与可用识别器范围受限有关,成年活力高与识别器范围增加以及一些自身免疫/免疫抑制有关,衰老与可用识别器范围广泛以及广泛的自身免疫/免疫抑制有关。讨论了生命周期模式及其控制。建议控制机制可能包括:1)饮食限制,在某些时期完全禁食。2)特异性识别器抑制,涉及的基因是在脊椎动物的细胞表面、血清和各种体液中发现的各种抗原(物种和多态性),例如ABO、MNSs、P、Rh、Le和其他血型、ABO和Le分泌型抗原以及HL - A抗原。此外,免疫反应和混合淋巴细胞培养位点也与之有关。最后,讨论了与性选择相关的生命周期控制。