Zhao Lianjie, Zhang Hao, Tang Ning, Li Min-Hui, Hu Jun
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China.
Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, Paris 75005, France.
ACS Appl Mater Interfaces. 2023 Sep 6;15(35):41927-41936. doi: 10.1021/acsami.3c09032. Epub 2023 Aug 24.
Polyaniline (PANi) hydrogels that combine advantages of hydrogels and conductive PANi have recently emerged in areas of wearable devices and personal healthcare. Nevertheless, their mechanical performance often gradually degrades after being used for a period, caused by destruction of the inner structures when external forces are applied. Inspired by biological structures with persistent durability, we develop here a phytic acid-assisted PANi/poly(vinyl alcohol) (PVA) hydrogel that shows self-reinforcing features. As a natural product holding plenty of phosphate groups, phytic acid (PA) plays two crucial roles when preparing this hydrogel: (1) aniline is salinized by PA in aqueous solution to promote in situ polymerization, making the resulting PANi conductive; (2) PA/PANi particles form hydrogen bonds with PVA, acting as stress concentration points to induce structure orientation. The optimal PVA/PA/PANi hydrogel displays dark green color with a uniform distribution of PA/PANi particles. After experiencing repetitive 4 × 100 stretching at a strain of 10%, the hydrogel exhibits an enhanced fracture strength (20.35 MPa), Young's modulus (22.66 MPa), and toughness (36.24 MJ·m) compared with the original hydrogel. This self-reinforcing feature is mainly attributed to the formation of anisotropic structures fixed by hydrogen bonds between PA/PANi particles and PVA chains upon repetitive external forces. Moreover, anisotropic structures can be disassembled by swelling the post-stretched hydrogel in water, and the swollen hydrogel shows similar self-reinforcing behaviors. The good mechanical durability and reusable characteristics make the PVA/PA/PANi hydrogel a reliable strain sensor. This work provides a structural growing-reviving approach for conductive hydrogels with persistent durability.
结合了水凝胶和导电聚苯胺优势的聚苯胺(PANi)水凝胶最近在可穿戴设备和个人医疗保健领域崭露头角。然而,由于在外力作用下内部结构遭到破坏,它们的机械性能在使用一段时间后往往会逐渐下降。受具有持久耐用性的生物结构启发,我们在此开发了一种具有自增强特性的植酸辅助PANi/聚乙烯醇(PVA)水凝胶。作为一种含有大量磷酸基团的天然产物,植酸(PA)在制备这种水凝胶时发挥了两个关键作用:(1)在水溶液中,苯胺被PA盐化以促进原位聚合,使生成的PANi具有导电性;(2)PA/PANi颗粒与PVA形成氢键,作为应力集中点诱导结构取向。最佳的PVA/PA/PANi水凝胶呈现深绿色,PA/PANi颗粒分布均匀。在10%应变下经历4×100次重复拉伸后,与原始水凝胶相比,该水凝胶表现出更高的断裂强度(20.35 MPa)、杨氏模量(22.66 MPa)和韧性(36.24 MJ·m)。这种自增强特性主要归因于在重复外力作用下,PA/PANi颗粒与PVA链之间通过氢键形成了固定的各向异性结构。此外,通过将拉伸后的水凝胶在水中溶胀,可以拆解各向异性结构,溶胀后的水凝胶表现出类似的自增强行为。良好的机械耐久性和可重复使用特性使PVA/PA/PANi水凝胶成为一种可靠的应变传感器。这项工作为具有持久耐用性的导电水凝胶提供了一种结构生长 - 恢复的方法。