Wang Guxia, Yang Changxing, Bai Qingyan, Guan Kun, Shang Yue, Li Dan, Guo Shengwei
School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China.
Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, PR China.
Langmuir. 2023 Sep 5;39(35):12476-12487. doi: 10.1021/acs.langmuir.3c01699. Epub 2023 Aug 24.
The unique structure and ultralow interlayer shear strength give molybdenum disulfide (MoS) materials a broad prospect for energy savings, economic benefits, and extended operating life of lubrication systems. Herein, we prepared an effective integration strategy to prepare novel small-sized and chemically grafted MoS to solve the problems of poor dispersibility and easy agglomeration of MoS. The MoS powder was stripped and oxidized to generate active centers using acid oxidation and high-speed ultrasonic crushing to obtain two different types of alkylamine chemically, covalently grafted, oxidized MoS nanosheets as lubricant additives to achieve friction reduction and antiwear. The chemical changes and structural characteristics of different types of alkylamine molecules upon covalent interaction with oxidized MoS were investigated in detail by FTIR, XPS, TGA, XRD, and TEM analyses. The results showed that the alkylamine-grafted MoS oxide nanosheets had good dispersion in 15# industrial white oil, and friction experiments confirmed that the alkylamine-grafted MoS oxide (MoS-O-OLA) nanosheets exhibited better friction and wear resistance such that, compared with pure 15# industrial white oil, the 0.02 wt % MoS-O-OLA nanosheets could significantly reduce friction (36.2%) and wear (22.4%). The field-emission scanning electron microscopy (FESEM) and EDS analyses of the wear surface showed that MoS-O-OLA nanosheets play an important role in improving tribological properties by generating interlayer slippage at the steel ball contact interface, thereby forming surface protection and a uniform oil film.
独特的结构和超低的层间剪切强度赋予了二硫化钼(MoS)材料在节能、经济效益以及延长润滑系统使用寿命方面广阔的前景。在此,我们制备了一种有效的整合策略来制备新型的小尺寸且化学接枝的MoS,以解决MoS分散性差和易团聚的问题。通过酸氧化和高速超声粉碎将MoS粉末剥离并氧化以产生活性中心,从而化学共价接枝获得两种不同类型的烷基胺氧化MoS纳米片作为润滑添加剂以实现减摩抗磨。通过傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、热重分析(TGA)、X射线衍射(XRD)和透射电子显微镜(TEM)分析详细研究了不同类型烷基胺分子与氧化MoS共价相互作用时的化学变化和结构特征。结果表明,烷基胺接枝的MoS氧化物纳米片在15#工业白油中具有良好的分散性,摩擦实验证实烷基胺接枝的MoS氧化物(MoS-O-OLA)纳米片表现出更好的摩擦磨损性能,与纯15#工业白油相比,0.02 wt%的MoS-O-OLA纳米片可显著降低摩擦(36.2%)和磨损(22.4%)。磨损表面的场发射扫描电子显微镜(FESEM)和能谱分析(EDS)表明,MoS-O-OLA纳米片通过在钢球接触界面产生层间滑移从而形成表面保护和均匀油膜,在改善摩擦学性能方面发挥着重要作用。